• Title/Summary/Keyword: Video Classification

Search Result 356, Processing Time 0.026 seconds

An Effective Classification Method of Video Contents Using a Neural-Network (신경망을 이용한 효율적인 비디오 컨텐츠 분류 방법)

  • 이후형;전승철;박성한
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.109-112
    • /
    • 2001
  • This paper proposes a method to classify different video contents using features of digital video. Classified video types are the news, drama, show, sports, and talk program. Features, such as intra-coded macroblock number St motion vector in P-picture in MPEG domain are used. The frame difference of YCbCr is also employed as a measure of classification. We detect the occurrences of cuts in a video for a measure of classification. Finally, back-propagation neural-network of 3 layers is used to classify video contents.

  • PDF

Chaotic Features for Traffic Video Classification

  • Wang, Yong;Hu, Shiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2833-2850
    • /
    • 2014
  • This paper proposes a novel framework for traffic video classification based on chaotic features. First, each pixel intensity series in the video is modeled as a time series. Second, the chaos theory is employed to generate chaotic features. Each video is then represented by a feature vector matrix. Third, the mean shift clustering algorithm is used to cluster the feature vectors. Finally, the earth mover's distance (EMD) is employed to obtain a distance matrix by comparing the similarity based on the segmentation results. The distance matrix is transformed into a matching matrix, which is evaluated in the classification task. Experimental results show good traffic video classification performance, with robustness to environmental conditions, such as occlusions and variable lighting.

Extraction of User Preference for Video Stimuli Using EEG-Based User Responses

  • Moon, Jinyoung;Kim, Youngrae;Lee, Hyungjik;Bae, Changseok;Yoon, Wan Chul
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1105-1114
    • /
    • 2013
  • Owing to the large number of video programs available, a method for accessing preferred videos efficiently through personalized video summaries and clips is needed. The automatic recognition of user states when viewing a video is essential for extracting meaningful video segments. Although there have been many studies on emotion recognition using various user responses, electroencephalogram (EEG)-based research on preference recognition of videos is at its very early stages. This paper proposes classification models based on linear and nonlinear classifiers using EEG features of band power (BP) values and asymmetry scores for four preference classes. As a result, the quadratic-discriminant-analysis-based model using BP features achieves a classification accuracy of 97.39% (${\pm}0.73%$), and the models based on the other nonlinear classifiers using the BP features achieve an accuracy of over 96%, which is superior to that of previous work only for binary preference classification. The result proves that the proposed approach is sufficient for employment in personalized video segmentation with high accuracy and classification power.

Video Quality Representation Classification of Encrypted HTTP Adaptive Video Streaming

  • Dubin, Ran;Hadar, Ofer;Dvir, Amit;Pele, Ofir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3804-3819
    • /
    • 2018
  • The increasing popularity of HTTP adaptive video streaming services has dramatically increased bandwidth requirements on operator networks, which attempt to shape their traffic through Deep Packet inspection (DPI). However, Google and certain content providers have started to encrypt their video services. As a result, operators often encounter difficulties in shaping their encrypted video traffic via DPI. This highlights the need for new traffic classification methods for encrypted HTTP adaptive video streaming to enable smart traffic shaping. These new methods will have to effectively estimate the quality representation layer and playout buffer. We present a new machine learning method and show for the first time that video quality representation classification for (YouTube) encrypted HTTP adaptive streaming is possible. The crawler codes and the datasets are provided in [43,44,51]. An extensive empirical evaluation shows that our method is able to independently classify every video segment into one of the quality representation layers with 97% accuracy if the browser is Safari with a Flash Player and 77% accuracy if the browser is Chrome, Explorer, Firefox or Safari with an HTML5 player.

Automatic Genre Classification of Sports News Video Using Features of Playfield and Motion Vector (필드와 모션벡터의 특징정보를 이용한 스포츠 뉴스 비디오의 장르 분류)

  • Song, Mi-Young;Jang, Sang-Hyun;Cho, Hyung-Je
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.89-98
    • /
    • 2007
  • For browsing, searching, and manipulating video documents, an indexing technique to describe video contents is required. Until now, the indexing process is mostly carried out by specialists who manually assign a few keywords to the video contents and thereby this work becomes an expensive and time consuming task. Therefore, automatic classification of video content is necessary. We propose a fully automatic and computationally efficient method for analysis and summarization of spots news video for 5 spots news video such as soccer, golf, baseball, basketball and volleyball. First of all, spots news videos are classified as anchor-person Shots, and the other shots are classified as news reports shots. Shot classification is based on image preprocessing and color features of the anchor-person shots. We then use the dominant color of the field and motion features for analysis of sports shots, Finally, sports shots are classified into five genre type. We achieved an overall average classification accuracy of 75% on sports news videos with 241 scenes. Therefore, the proposed method can be further used to search news video for individual sports news and sports highlights.

Using the fusion of spatial and temporal features for malicious video classification (공간과 시간적 특징 융합 기반 유해 비디오 분류에 관한 연구)

  • Jeon, Jae-Hyun;Kim, Se-Min;Han, Seung-Wan;Ro, Yong-Man
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.365-374
    • /
    • 2011
  • Recently, malicious video classification and filtering techniques are of practical interest as ones can easily access to malicious multimedia contents through the Internet, IPTV, online social network, and etc. Considerable research efforts have been made to developing malicious video classification and filtering systems. However, the malicious video classification and filtering is not still being from mature in terms of reliable classification/filtering performance. In particular, the most of conventional approaches have been limited to using only the spatial features (such as a ratio of skin regions and bag of visual words) for the purpose of malicious image classification. Hence, previous approaches have been restricted to achieving acceptable classification and filtering performance. In order to overcome the aforementioned limitation, we propose new malicious video classification framework that takes advantage of using both the spatial and temporal features that are readily extracted from a sequence of video frames. In particular, we develop the effective temporal features based on the motion periodicity feature and temporal correlation. In addition, to exploit the best data fusion approach aiming to combine the spatial and temporal features, the representative data fusion approaches are applied to the proposed framework. To demonstrate the effectiveness of our method, we collect 200 sexual intercourse videos and 200 non-sexual intercourse videos. Experimental results show that the proposed method increases 3.75% (from 92.25% to 96%) for classification of sexual intercourse video in terms of accuracy. Further, based on our experimental results, feature-level fusion approach (for fusing spatial and temporal features) is found to achieve the best classification accuracy.

A Personal Videocasting System with Intelligent TV Browsing for a Practical Video Application Environment

  • Kim, Sang-Kyun;Jeong, Jin-Guk;Kim, Hyoung-Gook;Chung, Min-Gyo
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.10-20
    • /
    • 2009
  • In this paper, a video broadcasting system between a home-server-type device and a mobile device is proposed. The home-server-type device can automatically extract semantic information from video contents, such as news, a soccer match, and a baseball game. The indexing results are utilized to convert the original video contents to a digested or arranged format. From the mobile device, a user can make recording requests to the home-server-type devices and can then watch and navigate recorded video contents in a digested form. The novelty of this study is the actual implementation of the proposed system by combining the actual IT environment that is available with indexing algorithms. The implementation of the system is demonstrated along with experimental results of the automatic video indexing algorithms. The overall performance of the developed system is compared with existing state-of-the-art personal video recording products.

  • PDF

A Survey on Recent Video Action Classification Techniques (Video Action Classification 최신 기술 조사)

  • Cha, Jin Hyuck;Jung, Seung-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.1049-1052
    • /
    • 2019
  • 최근 딥러닝을 이용해 정지 영상에 대한 연구 뿐만 아니라 동영상에 대한 연구들이 진행되고 있다. 본 논문에서는 동영상 딥러닝 기술에서 가장 주가 되고 있는 video action classification 에 대한 최신 기술들을 조사했다.

Classification of TV Program Scenes Based on Audio Information

  • Lee, Kang-Kyu;Yoon, Won-Jung;Park, Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3E
    • /
    • pp.91-97
    • /
    • 2004
  • In this paper, we propose a classification system of TV program scenes based on audio information. The system classifies the video scene into six categories of commercials, basketball games, football games, news reports, weather forecasts and music videos. Two type of audio feature set are extracted from each audio frame-timbral features and coefficient domain features which result in 58-dimensional feature vector. In order to reduce the computational complexity of the system, 58-dimensional feature set is further optimized to yield l0-dimensional features through Sequential Forward Selection (SFS) method. This down-sized feature set is finally used to train and classify the given TV program scenes using κ -NN, Gaussian pattern matching algorithm. The classification result of 91.6% reported here shows the promising performance of the video scene classification based on the audio information. Finally, the system stability problem corresponding to different query length is investigated.

An Explainable Deep Learning Algorithm based on Video Classification (비디오 분류에 기반 해석가능한 딥러닝 알고리즘)

  • Jin Zewei;Inwhee Joe
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.449-452
    • /
    • 2023
  • The rapid development of the Internet has led to a significant increase in multimedia content in social networks. How to better analyze and improve video classification models has become an important task. Deep learning models have typical "black box" characteristics. The model requires explainable analysis. This article uses two classification models: ConvLSTM and VGG16+LSTM models. And combined with the explainable method of LRP, generate visualized explainable results. Finally, based on the experimental results, the accuracy of the classification model is: ConvLSTM: 75.94%, VGG16+LSTM: 92.50%. We conducted explainable analysis on the VGG16+LSTM model combined with the LRP method. We found VGG16+LSTM classification model tends to use the frames biased towards the latter half of the video and the last frame as the basis for classification.