• Title/Summary/Keyword: Vickers' hardness

Search Result 677, Processing Time 0.027 seconds

Comparison on marginal fitness and mechanical properties of copings with zirconia block and CAM type (지르코니아 블록과 CAM 종류에 따른 코핑의 변연적합도와 기계적 특성 비교)

  • Chung, In-Sung;Jeon, Byung-Wook;Kim, Won-Young;Kang, Jae-Min
    • Journal of Technologic Dentistry
    • /
    • v.39 no.2
    • /
    • pp.75-82
    • /
    • 2017
  • Purpose: This study provided the basic data for selection the zirconia block and CAM by means of marginal fitness observations, flexural strength test and hardness test. Methods: Three dental zirconia blocks(ABCera, NaturaZ, ST98) and two dental milling machines(CAD/CAM MS, DWX-50) were used in this study. Metal abutment(diameter 10 mm, height 5 mm, inclined angle $3^{\circ}$ taper, 1 mm chamfer margin) was fabricated by Ti customized abutment, and then zirconia copings were fabricated for each ten specimens. Silicone replica technique was used to observe the marginal fitness of cross-sections with a stereomicroscope at ${\times}50$ magnification. The dental zirconia blocks was cut into 10 pieces each having a size of $25mm{\times}5mm{\times}1mm$, and fabricated according to the manufacturer's instructions, and flexural strength was measured using a universal testing machine. For hardness test, a micro Vickers hardness tester was used as it was in the flexural strength test. Statistical analysis was performed by one way ANOVA and post-test was performed by Scheffe test. Results: For marginal fitness of bucco-lingual axial, ZU group($59.7{\pm}10.3{\mu}m$) was the lowest, followed by RA, ZA, ZD, RD, RU. For marginal fitness of mesio-distal axial, ZU group($59.3{\pm}10.2{\mu}m$) was the lowest, followed by RA, ZA, RD, ZD, RU. One-way ANOVA showed statistically significant difference between groups(p<0.05). For flexural strength, ABCera block($718.0{\pm}57.2MPa$) was the highest, followed by NaturaZ, ST98. For hardness, ABCera block($1550.3{\pm}19.8Hv$) was the highest, followed by ST98, NaturaZ. There was no significant difference in flexural strength and hardness between blocks(p>0.05). Conclusion: Based on the results of this study, the type of dental zirconia block did influence the marginal fitness, and all dental zirconia blocks are expected to be suitable for clinical application. The highest flexural strength and hardness were ABCera block, and no statistically significant difference was observed.

Improvement of fatigue resistance of the miniature gear by controlling holding time of temperature in the hot powder extrusion process (분말 압출 공정에서 온도 유지시간 제어를 통한 미세기어의 내피로성 향상 연구)

  • Kim, J.W.;Lee, K.H.;Hwang, D.W.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.449-452
    • /
    • 2009
  • This paper was designed to fabricate the miniature spur gear with pitch circle of 1.8 by hot extrusion process of mechanically alloyed Zn-22wt%Al powder at various temperature. The mechanical alloying was preformed for ball milled times of 8h, 16h and 32h by the planetary ball milling. Mechanically alloyed powders were compacted cylindrical performs. Extrusions of the miniature spur gear using the alloyed powder were carried out at different extrusion temperatures. The extruded spur gear was sintered for 2h at $350^{\circ}C$ in argon atmosphere. The friction between the die and the powdered billet and the internally different density due to complex product shape cause the internal crack. To overcome the mentioned problems, high dimensional accuracy at cross section of the spur gear and uniform Vickers hardness could be obtained by graphite lubricant and controlling holding time.

  • PDF

Microstructural Feature of Full-densified W-Cu Nanocomposites Containing Low Cu Content

  • Lee, Jai-Sung;Jung, Sung-Soo;Choi, Joon-Phil;Lee, Geon-Yong
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.138-141
    • /
    • 2013
  • The microstructure evolution during sintering of the W-5 wt.%Cu nanocomposite powders was investigated for the purpose of developing a high density W-Cu alloy. The W-5 wt.%Cu nanopowder compact, fully-densified during sintering at 1623 K, revealed a homogeneous microstructure that consists of high contiguity structures of W-W grains and an interconnected Cu phase located along the edges of the W grains. The Vickers hardness of the sintered W-5 wt.%Cu specimen was $427{\pm}22$ Hv much higher than that ($276{\pm}19$ Hv) of the conventional heavy alloy. This result is mostly due to the higher contiguity microstructure of the W grains compared to the conventional W heavy alloy.

Study on the mechanical properties of 5052 aluminum alloy laser welds (5052 알루미늄 합금 레이저 용접부의 기계적 성질에 관한 연구)

  • 윤종원;이윤상;이문용;정병훈
    • Laser Solutions
    • /
    • v.6 no.1
    • /
    • pp.25-31
    • /
    • 2003
  • 5052 aluminum alloy sheets of 2mm thickness were butt welded using a continuous wave Nd:YAG laser with and without Ar shielding gas. Vickers hardness, transverse-weld tensile and bulge tests were carried out to investigate the effect of Ar shielding gas on the mechanical properties and formability of laser welds. Porosity in the weld metals was investigated using an optical microscope. Mechanical properties and formability of 5052 aluminum alloy laser welds were degraded compared to those of base metal. However, those properties were improved due to the reduced size and number of porosity when Ar shielding gas was used.

  • PDF

TIG welding of copper and aluminum (TIG 용접에 의한 동-알루미늄의 접합)

  • Joo, Sung-Min;Kim, Sung-Joo;Bang, Han-Sur;Katayama, Seiji
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.117-120
    • /
    • 2003
  • Joining or welding of dissimilar metallic materials is very difficult problem because material properties like heat conductivity, melting points, coefficient of thermal expansion, etc. are different each other and cracks are occurred easily due to formation of intermetallic compounds. Nevertheless, deep attention from great industrial demands and trials to joining dissimilar materials has been increased steadily. In this study, TIG welding of Cu to Al is tried and tensile test, SEM and EDX analysis are carried out.

  • PDF

Microstructure and Mechanical Properties of TiC-Co/Al Composites Prepared by Reaction-Bonded Sintering (반응결합 소결에 의한 TiC-Co/Al 복합체의 미세구조 및 기계적 특성)

  • 한인섭;남기웅;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.2
    • /
    • pp.257-269
    • /
    • 1995
  • The TiC-Co/Al reaction-sintered products were prepared by the infiltration of various Co/Al metal mixture into the preform, and their microstructure, phases, and mechanical properties were investigated. With increasing the atomic ratio of Co/Al, tiC grain shape was changed from spherical to platelet particles, and the grain size increased. The crystalline phases found in the liquid matrix formed by the infiltration of Co/Al metal mixture were determined to be Al5Co2 and AlCo by EDS and XRD, and the two crystalline phases were located dominantly between TiC grains, when the Co/Al atomic ratio was lower than an unity. There was a tendency that the density, bending strength and fracture toughness increase with Co/Al atomic ratio until the infiltrated metal was 100% Co. The maximum value was achieved by the composition containing 100% Co infiltrated metal. The Vickers hardness decreased as Co/Al atomic ratio increased.

  • PDF

A Study on the Surfaces Modification of Tool Steel by YAG LASER (YAG LASER에 의한공구강의 표면개질에 관한 연구)

  • 강형식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.2
    • /
    • pp.66-71
    • /
    • 2000
  • Laser induced surface hardening of Tool steel(STC5) can be achieved either with or without surface melting. In trans-formation hardening as the surface is heated to a temperature below its melting point and is rapidly cooled solidified microstructures are usually much finer and stronger than those of the base matals. For this reason surface modification of tool steel by YAG laser irradiation has been studied as a function of processing parameters such as power density pulse width defocusing distance and molten depth. The high energy density changes and refines the microstructure of the near surface layer. In the case of beam passes martensite formed in the melt zone exhibited very high vickers hardness values. Molten depth and width depend on defocusing distance and energy of black color painting is more absorptive than other color painting.

  • PDF

Quantitative Evaluation of Fatigue Strength by Spheroidal of Graphite in Ductile Cast Iron (구상화율에 의한 구상 흑연주철재의 피로강도의 정량적 평가)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.36-41
    • /
    • 1999
  • Although the problems of defects and nonmetallic inclusion in metal fatigue are very complicated it is particularly important to view these problems from the perspective that defects and inclusions are virtually equivalent to small cracks. This concept will help us to understand various fatigue phenomena caused by graphite of Ductile cast iron. Therefore in this study different ferrite-pearlite matrix structure and pheroidal ratio of graphite of 70%, 80% and 90% GCD40 , GCD45-2 series have been carried out rotary bending fatigue test estimated the maxi-mum size of graphite investigated correlation. It was concluded as follows : (1) in ductile cast iron which have various spheroidal ratio of graphite the fatigue limit C series of 90% spheroidal ratio of graphite is the highest. While A series of 70% spheroidal ratio of graphite is the lowest (2) fatigue limit was predicted by vickers hardness(Hv) of matrix {{{{ SQRT {area } }}}} of maximum size graphite inputting Murakami and Endo's formula.

  • PDF

A Study on Synthesis of (Mo.W)$\textrm{Si}_2$ Composites (이규화몰리.텅스텐 복합재료의 합성에 관한 연구)

  • Jang, Dae-Gyu;Abbaschian, R.
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.92-98
    • /
    • 1999
  • (Mo.W)Si$_2$ composites were fabricated by vacuum hot-pressing elemental Mo, W and Si powders at various temperatures. Elemental Mo, W and Si powders were alloyed in the proper proportions to form solid solutions. The microstructure and properties of these materials was characterized by using x-ray diffraction, optical microscopy, energy dispersive x-ray spectroscopy and Vicker's technique. It was found that tungsten was mainly substituted for Mo atoms, and made a completed solid solution of (Mo.W)Si$_2$ over 1$600^{\circ}C$. The lattice parameters and Vickers hardness increased largely with increasing reaction temperature by the most soluble elements, due to the solid-solution hardening.

  • PDF

Fabrication and Properties of the Pressable Dental Porcelain (가압성형용 치과도재의 제조와 특성)

  • Lee, Eun-Hee;Choi, Hee-Rak;Jeong, Hae-Yong
    • Korean Journal of Materials Research
    • /
    • v.16 no.3
    • /
    • pp.157-162
    • /
    • 2006
  • Pressable ceramics have many applications in the field of dental industry because of their excellent esthetic, compressive strength, chemical durability. Despite these attractive characteristics, they have not been widely used since they are very brittle and extremly sensitive to porcelain. In this study, the fabrication of pressable dental porcelain ($SiO_2-Al_2O_3-K_2O-Na_2O$) as a function of contents of $Al_2O_3,\;BaO\;and\;ZrO_2$ were investigated. And then compressive strength, Vickers hardness, density and thermal expansion coefficient (TEC) tests have been carried out to evaluate properties of pressable dental porcelain fabricated. The property of pressable dental porcelain fabricated by adding of 15%$Al_2O_3$ and 2%BaO contents was closely approximated to that of natural tooth.