• Title/Summary/Keyword: Vibroacoustics

Search Result 8, Processing Time 0.026 seconds

Dynamic prediction fatigue life of composite wind turbine blade

  • Lecheb, Samir;Nour, Abdelkader;Chellil, Ahmed;Mechakra, Hamza;Ghanem, Hicham;Kebir, Hocine
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.673-691
    • /
    • 2015
  • In this paper we are particularly focusing on the dynamic crack fatigue life of a 25 m length wind turbine blade. The blade consists of composite materiel (glass/epoxy). This work consisted initially to make a theoretical study, the turbine blade is modeled as a Timoshenko rotating beam and the analytical formulation is obtained. After applying boundary condition and loads, we have studied the stress, strain and displacement in order to determine the critical zone, also show the six first modes shapes to the wind turbine blade. Secondly was addressed to study the crack initiation in critical zone which based to finite element to give the results, then follow the evolution of the displacement, strain, stress and first six naturals frequencies a function as crack growth. In the experimental part the laminate plate specimen with two layers is tested under cyclic load in fully reversible tensile at ratio test (R = 0), the fast fracture occur phenomenon and the fatigue life are presented, the fatigue testing exerted in INSTRON 8801 machine. Finally which allows the knowledge their effect on the fatigue life, this residual change of dynamic behavior parameters can be used to predicted a crack size and diagnostic of blade.

Vibroacoustics of Axisymmetric Cylindrical Elastic Shells : Wall Impedance of the Plane Mode (축대칭 원통 탄성 셸의 진동음향 : 평면 모드의 벽 임피던스)

  • Park, Chan-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.930-936
    • /
    • 2008
  • Fluid loading of a vibrating cylindrical shell has influence on natural frequencies and vibration magnitudes of the shell and the acoustic pressure of fluid. The vibroacoustics of fluid-filled cylindrical shells need the coupled solution of Helmholtz equation and governing equation of a cylindrical shell with boundary conditions. This paper proposed the wall impedance of fluid-filled axisymmetric cylindrical shells, focusing on the inner fluid/shell interaction. To propose the impedance, shell displacements used the linear combination of in vacuo shell modes. Acoustic pressure prediction of fluid used Kirchhoff-Helmholtz integral equation with Green's function of the plane mode. For the demonstration of the proposed results, numerical applications on mufflers were conducted.

Vibroacoustics of Axisymmetric Cylindrical Elastic Shells (축대칭 원통 탄성 쉘의 진동음향)

  • Park, Chan-IL
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.160-165
    • /
    • 2008
  • Fluid loading of a vibrating cylindrical shell can change natural frequencies and vibration magnitudes of the shell and a vibrating cylindrical shell can also change acoustic pressure of fluid. The vibroacoustics of fluid-filled cylindrical shells need the coupled solution of Helmholtz equation and governing equation of a cylindrical shell with boundary conditions. This paper proposed the wall impedance of fluid-filled axisymmetric cylindrical shells, focusing on the inner fluid/shell interaction. To propose the impedance, shell displacements used the linear combination of in vacuo shell modes. Acoustic pressure prediction of fluid used Kirchchoff-Helmholtz Integral equation with Green function of the plane mode. For the demonstration of the proposed results, numerical applications on mufflers were conducted.

  • PDF

Estimation of Penetration Depth Using Acceleration Signal Analysis for Underwater Free Fall Cone Penetration Tester

  • Seo, Jung-min;Shin, Changjoo;Kwon, OSoon;Jang, In Sung;Kang, Hyoun;Won, Sung Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.202-207
    • /
    • 2020
  • A track-type underwater construction robot (URI-R) was developed by the Korea Institute of Ocean Science & Technology. Because URI-R uses tracks to move on the seabed, insufficient ground strength may hinder its movement. For smooth operation of URI-R on the seabed, it is important to determine the geotechnical properties of the seabed. To determine these properties, standard penetration test (SPT), cone penetration test (CPT), and sampling are used on land. However, these tests cannot be applied on the seabed due to a high cost owing to the vessel, crane, sampler, and analysis time. To overcome these problems, a free fall cone penetration tester (FFCPT) is being developed. The FFCPT is a device that acquires the geotechnical properties during impact/penetration/finish phases by free fall in water. Depth information is crucial during soil data acquisition. As the FFCPT cannot measure the penetration depth directly, it is estimated indirectly using acceleration. The estimated penetration depth was verified by results of real tests conducted on land.

Recommendations on dynamic pressure sensor placement for transonic wind tunnel tests

  • Yang, Michael Y.;Palodichuk, Michael T.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.6
    • /
    • pp.497-513
    • /
    • 2019
  • A wind tunnel test was conducted that measured surface fluctuating pressures aft of a ramp at transonic speeds. Dynamic pressure test data was used to perform a study to determine best locations for streamwise sensor pairs for shocked and unshocked runs based on minimizing the error in root-mean-square acceleration response of the panel. For unshocked conditions, the upstream sensor is best placed at least 6.5 ramp heights downstream of the ramp, and the downstream sensor should be within 2 ramp heights from the upstream sensor. For shocked conditions, the upstream sensor should be between 1 and 7 ramp heights downstream of the shock, with the downstream sensor 2 to 3 ramp heights of the upstream sensor. The shock was found to prevent the passage coherent flow structures; therefore, it may be desired to use the shock to define the boundary of subzones for the purpose of loads definition. These recommendations should be generally applicable to a range of expansion corner geometries in transonic flow provided similar flow structures exist. The recommendations for shocked runs is more limited, relying on data from a single dataset with the shock located near the forward end of the region of interest.

Prediction of Fluid-borne Noise Transmission Using AcuSolve and OptiStruct

  • Barton, Michael;Corson, David;Mandal, Dilip;Han, Kyeong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.557-561
    • /
    • 2014
  • In this work, Altair Engineering's vibroacoustic modeling approach is used to simulate the acoustic signature of a simplified automobile in a wind tunnel. The modeling approach relies on a two step procedure involving simulation and extraction of acoustic sources using a high fidelity Computational Fluid Dynamics (CFD) simulation followed by propagation of the acoustic energy within the structure and passenger compartment using a structural dynamics solver. The tools necessary to complete this process are contained within Altair's HyperWorks CAE software suite. The CFD simulations are performed using AcuSolve and the structural simulations are performed using OptiStruct. This vibroacoustics simulation methodology relies on calculation of the acoustic sources from the flow solution computed by AcuSolve. The sources are based on Lighthill's analogy and are sampled directly on the acoustic mesh. Once the acoustic sources have been computed, they are transformed into the frequency domain using a Fast Fourier Transform (FFT) with advanced sampling and are subsequently used in the structural acoustics model. Although this approach does require the CFD solver to have knowledge of the acoustic simulation domain a priori, it avoids modeling errors introduced by evaluation of the acoustic source terms using dissimilar meshes and numerical methods. The aforementioned modeling approach is demonstrated on the Hyundai Simplified Model (HSM) geometry in this work. This geometry contains flow features that are representative of the dominant noise sources in a typical automobile design; namely vortex shedding from the passenger compartment A-pillar and bluff body shedding from the side view mirrors. The geometry also contains a thick poroelastic material on the interior that acts to reduce the acoustic noise. This material is modeled using a Biot material formulation during the structural acoustic simulation. Successful prediction of the acoustic noise within the HSM geometry serves to validate the vibroacoustic modeling approach for automotive applications.

  • PDF

Development of Trigger for Signal Storage Reflecting the Behavior Characteristics of the Free-Fall Cone Penetration Test System (자유낙하식 콘관입시험 시스템의 거동특성을 반영한 신호저장용 트리거 개발)

  • Kang, Hyoun;Shin, Changjoo;Kwon, OSoon;Jang, In Sung;Baek, Seungjae;Seo, Jung-min;Won, Sung Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.16-22
    • /
    • 2020
  • The Korea Institute of Ocean Science & Technology is developing a free-fall cone penetration test system (FFCPT) that can acquire the characteristics of the seabed surface soil. To obtain the data through the FFCPT, a method of storing the signals for the entire time or a method of storing the signal for user-defined time can be considered. For efficient data storage and management, it is advantageous that data be stored by user definition. Therefore, this study analyzed the basic behavior using the signal acquired through a sensor mounted in the FFCPT and developed a trigger method to recognize the start and end of data storage using a depth sensor. The start and endpoints of the fall were determined using the moving average difference of 3 and 0.03 seconds of the depth signal. A real sea-trial test was performed using the FFCPT, and the developed trigger was operated normally.

Development of Underwater Positioning System using Asynchronous Sensors Fusion for Underwater Construction Structures (비동기식 센서 융합을 이용한 수중 구조물 부착형 수중 위치 인식 시스템 개발)

  • Oh, Ji-Youn;Shin, Changjoo;Baek, Seungjae;Jang, In Sung;Jeong, Sang Ki;Seo, Jungmin;Lee, Hwajun;Choi, Jae Ho;Won, Sung Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.352-361
    • /
    • 2021
  • An underwater positioning method that can be applied to structures for underwater construction is being developed at the Korea Institute of Ocean Science and Technology. The method uses an extended Kalman filter (EKF) based on an inertial navigation system for precise and continuous position estimation. The observation matrix was configured to be variable in order to apply asynchronous measured sensor data in the correction step of the EKF. A Doppler velocity logger (DVL) can acquire signals only when attached to the bottom of an underwater structure, and it is difficult to install and recover. Therefore, a complex sensor device for underwater structure attachment was developed without a DVL in consideration of an underwater construction environment, installation location, system operation convenience, etc.. Its performance was verified through a water tank test. The results are the measured underwater position using an ultra-short baseline, the estimated position using only a position vector, and the estimated position using position/velocity vectors. The results were compared and evaluated using the circular error probability (CEP). As a result, the CEP of the USBL alone was 0.02 m, the CEP of the position estimation with only the position vector corrected was 3.76 m, and the CEP of the position estimation with the position and velocity vectors corrected was 0.06 m. Through this research, it was confirmed that stable underwater positioning can be carried out using asynchronous sensors without a DVL.