• Title/Summary/Keyword: Vibro-acoustic Noise

Search Result 90, Processing Time 0.032 seconds

Radiation Characteristics of Heavy-weight Floor Impact Sounds in a Standard Test Building (표준실험동에서 중량충격음의 방사 특성)

  • Yoo, Seung-Yup;Jeong, Yong;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.381-384
    • /
    • 2005
  • The purpose of this study is to develop a prediction model for evaluating heavy-weight floor impact sounds in a test building. Three rooms in the test building (slab thickness In and 240mm), which consist of frame concrete structures were tested and modeled. First, the SPL distribution in the receiving room was analyzed by measuring SPL at 90 positions using a bang machine. Then, a vibration model using finite element method is proposed considering the material properties and boundary conditions. In addition, the result of transient analysis was compared with field measurements using a standard heavy-weight impact source. Through a vibro-acoustic simulation program, an acoustic model evaluating the building elements (reflected wall, nor, window and door) was proposed. Finally, validation of the prediction model was conducted by vibro-acoustic analysis with field measurements of noise radiation characteristics in receiving rooms.

  • PDF

Using structural intensity approach to characterize vibro-acoustic behavior of the cylindrical shell structure

  • Wang, Yuran;Huang, Rong;Liu, Zishun
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.297-319
    • /
    • 2018
  • In this paper, the vibro-acoustic behaviors of vibrational cylindrical shells are investigated by using structural intensity approach. The reducing interior noise method for vibrating cylindrical shells is proposed by altering and redistributing the structural intensity through changing the damping property of the structure. The concept of proposed novel method is based on the properties of structural intensity distribution on cylindrical shells under different load and damping conditions, which can reflects power flow in the structures. In the study, the modal formulas of structural intensity are developed for the steady state vibration of cylindrical shell structures. The detailed formulas of structural intensity are derived by substituting modal quantities, in which the effect of main parameters such as weight coefficients and distribution functions on structure intensity are analyzed and discussed. Numerical simulations are first carried out based on the structural intensity analytical solutions of modal formulas. Through simulating the coupling vibration and acoustical radiation problems of cylindrical shell, the relationship between vibro-acoustic and structural intensity distribution is derived. We find that for cylindrical shell, by properly arranging damping conditions, the structural intensity can be efficiently changed and further the noise property can be improved. The proposed methodology has important implications and potential applications in the vibration and noise control of fuselage structure.

Combining CFD/FEM/BEM/SEA to Predict Interior Vehicle Wind Noise - Validation Case CAA German Working Group (자동차 유동기인 실내소음 예측을 위한 CFD/FEM/BEM/SEA 의 조합 및 검증 - CAA German Working Group)

  • Blanchet, D.;Golota, A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.800-811
    • /
    • 2014
  • Recent developments in the prediction of the contribution of windnoise to the interior SPL have opened a realm of new possibilities in terms of i) how the convective and acoustic sources terms can be identified, ii) how the interaction between the source terms and the side glass can be described and finally iii) how the transfer path from the sources to the interior of the vehicle can be modelled. This work discusses in details these three aspects of wind noise simulation and recommends appropriate methods to deliver required results at the right time based on i) simulation and experimental data availability, ii) design stage at which a decision must be made and iii) time available to deliver these results. Several simulation methods are used to represent the physical phenomena involved such as CFD, FEM, BEM, FE/SEA Coupled and SEA. Furthermore, a 1D and 2D wavenumber transformation is used to extract key parameters such as the convective and the acoustic component of the turbulent flow from CFD and/or experimental data whenever available. This work focuses on the validation of the wind noise source characterization method and the vibro-acoustic models on which the wind noise sources are applied.

  • PDF

VIBRO-ACOUSTIC TROUBLESHOOTING SOLVES 5MW BOILERFEED PUMP TESTRING NOISE & VIBRATION PROBLEMS

  • Gielen, L.;Vandenbroeck, D.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.836-841
    • /
    • 1994
  • This paper describes the global vibro-acoustic troubleshooting approach, used to identify and separate different sources of noise and vibrations on a boilerfeed pump testrig. The pump serves for rotor dynamic research of a EC-funded BRITE-Euram profect. This approach resulted in the identification of local structural flexibilities in the connections between the machinery and the base plate. The relative importance of the modes during normal operation is revealed by comparison with operational deformation shapes. The use of sound intensity mapping allowed to calculate the total sound power and to rank the equipment according to its sound power contribution. High acoustic levels were found and related to the fluid drive and to the piping system. Modification of the piping section resulted in a reduction of noise and vibration levels along the test loop and smooth operation in a wide suction pressure range.

  • PDF

Prediction of Interior Noise by Excitation Force of Powertrain Based on Hybrid Transfer Path Analysis (Hybrid TPA를 이용한 파워트레인 구조기인 실내소음 예측)

  • Kim, Sung-Jong;Lee, Sang-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.117-124
    • /
    • 2008
  • In early design stage, the simulation of interior noise is useful for the enhancement of the noise, vibration and harshness (NVH) performance in a vehicle. The traditional transfer path analysis (TPA) technology cannot simulate the interior noise since it uses the experimental method. In order to solve this problem, in this paper, the hybrid TPA is developed as the novel approach. The hybrid TPA uses the simulated excitation force as the input force, which excites the flexible body of a car at the mount point, while the traditional TPA uses the measured force. This simulated force is obtained by numerical analysis for the FE (finite element) model of a powertrain. The interior noise is predicted by multiplying the simulated force by the vibro-acoustic transfer function (VATF) of the vehicle. The VATF is the acoustic response in the compartment of a car to the input force at the mount point of the powertrain in the flexible car body. The trend of the predicted interior noise based on the hybrid TPA very well corresponds to the measured interior noise, although there is some difference due to not only the experimental error and the simulation error but also the effect of the air-borne path.

Road Noise Estimation Based on Transfer Path Analysis Using a Simplified Tire Vibration Transfer Model (단순화된 타이어 진동전달 모델의 전달경로분석법을 이용한 로드노이즈 예측기술 개발)

  • Shin, Taejin;Park, Jongho;Lee, Sangkwon;Shin, Gwangsoo;Hwang, Sungwook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.176-184
    • /
    • 2013
  • Quantification of road noise is a challenging issue in the development of tire noise since its transfer paths are complicated. In this paper, a simplified model to estimate the road noise is developed. Transfer path of the model is from wheel to interior. The method uses the wheel excitation force estimated throughout inverse method. In inversion procedure, the Tikhonov regularization method is used to reduce the inversion error. To estimate the wheel excitation force, the vibration of knuckle is measured and transfer function between knuckle and wheel center is also measured. The wheel excitation force is estimated by using the measured knuckle vibration and the inversed transfer function. Finally interior noise due to wheel force is estimated by multiplying wheel excitation force in the vibro-acoustic transfer function. This vibro-acoustic transfer function is obtained throughout measurement. The proposed method is validated by using cleat excitation method. Finally, it is applied to the estimation of interior noise of the vehicle with different types of tires during driving test.

Predicting Noise inside a Trimmed Cavity Due to Exterior Flow (외부 유동에 의한 흡차음재 공간내의 소음 예측)

  • Jeong, ChanHee;Ganty, Bastien;Choi, EuiSung;Cho, MunHwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.466-471
    • /
    • 2014
  • The interior vehicle noise due to the exterior aerodynamic field is an important topic in the acoustic design of a car. The air flow detached from the A-pillar and impacting the side windows are of particular interest as they are located close to the driver / passenger and provides a lower insulation index than the trimmed car body parts. This paper presents a numerical analysis method for a simplified vehicle model. The internal air cavity including trim component are included in the simulation. The car body includes the windshield and two side windows. The body is made of aluminum and trimmed with porous layers. The methodology proposed in this paper relies on two steps: the first step involves the computation of the exterior flow and turbulence induced non-linear acoustic field using PowerFlow. The second step consists in the computation of the vibro-acoustic transmission through the window using the finite element vibro-acoustic solver Actran. Additionally in order to validate the numerical process, an experimental set-up has been created based on the simplified vehicle. The vibration of the windshield and windows, the total wind noise level results and the relative contributions of the different windows are then presented and compared to measurements. The influence of the flow yaw angle (different wind orientation) is also assessed.

  • PDF

Vibro-acoustic analysis for the reduction of HDD noise (HDD 소음 저감을 위한 음향/진동 분석)

  • Kim, Sung-Il;Ih, Jeong-Guon;Hong, Eo-Jin;Kim, Woo-Sung;Lee, Ho-Seong;Jeong, Cheol-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.144-149
    • /
    • 2006
  • 최근 저소음형 fan 의 도입과 컴퓨터 케이스의 설계 변경 등으로 컴퓨터 소음이 저감되어, HDD 나 CD/DVD-ROM 등에서 발생하는 협대역 소음들이 문제가 되기도 한다. 특히 HDD 의 소음은 회전 속도의 증가와 휴대용 컴퓨터나 외장 HDD와 같이 사용자에 근접한 환경에서 사용되는 빈도가 높아짐에 따라 소음제어에 대한 관심이 증가되고 있다. 본 연구에서는 HDD 소음 분석 및 제어에 적합한 방법론 정립을 위한 음향/진동 분석이 수행되였다. 먼저 음압과 음향 파워, 진동속도를 측정하여 각 면의 기여도와 문제가 되는 주파수 대역을 선정하여 그 원인이 무엇인지를 실험적으로 찾아내고, 소음저감을 발안을 제시하였다. 이러한 개선 방안들은 실험적인 방법으로 검증되었으며, 음향 진동 분석을 통한 소음원 파악 및 적절한 개선 방향의 설정은 향후 HDD 설계시 유용한 정보로 활용될 수 있을 것이다.

  • PDF

The Use of Vibro-acoustical Reciprocity to Estimate Source Strength and Airborne Noise Synthesis (구조-음향 상반성 원리를 이용한 공기기인 소음원의 강도 추정 및 소음 합성)

  • Kim, Yoon-Jae;Byun, Jae-Hwan;Kang, Yeon-June;Hong, Jin-Chul;Kwon, O-Jun;Kang, Koo-Tae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.42-49
    • /
    • 2009
  • In this paper, an alternative method was introduced to conduct a transfer path analysis for airborne noise. The method used the transfer function matrix composed of acoustic transfer functions that are referenced by the input voltage of a calibration source. A calibration factor which is converting a virtual voltage to source strength was deduced by vibro-acoustical reciprocity theorem. The calibration factor is then multiplied to the virtual input voltage to estimate the operational source strength. Three loudspeakers were used to noise sources of acrylic half car model. The method was applied to airborne noise transfer path analysis of the half car. The estimated source strength by transfer path analysis was compared the deduced source strength by vibro-acoustical reciprocity to verify the method.