• Title/Summary/Keyword: Vibro-Acoustic Sensitivity

Search Result 8, Processing Time 0.024 seconds

The Prediction of Weak Point about Vehicle Booming Noise Using the Acoustic Transfer Function (음향전달함수(ATF)를 이용한 부밍 소음 취약부 예측 연구)

  • Hwang, K.H.;Oh, H.J.;Choi, S.C.;Suh, J.K.;Hong, S.G.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.336-340
    • /
    • 2014
  • The noise and vibration have been evaluated by using the finite element model in the vehicle developing stage. The sound pressure of the vehicle compartment is predicted by the acoustic cavity model coupled with the body structure. In general, the structural model has been focused to study in the improvement of the noise. It is not easy to treat the structural model, instead the acoustic cavity model is relatively simple and aids in root cause analysis of vibro-acoustic issues. Therefore, the acoustic transfer function of the cavity is more efficient for finding out the main contribution parts of the vehicle booming noise. And examples about the run-up booming noise demonstrate the validity of the AFT analysis for improving the vibro-acoustic sensitivity.

  • PDF

NEW TECHNIQUE IN THE USE OF VIBRO-ACOUSTICAL RECIPROCITY WITH APPLICATION TO THE NOISE TRANSFER FUNCTION MEASUREMENT

  • Ko, K.H.;Kook, H.S.;Heo, S.J.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.173-177
    • /
    • 2006
  • A noise transfer function(NTF) is the frequency response function between an input force applied to an exterior point of a vehicle body and the resultant interior sound pressure usually measured at the driver's ear position. It represents the measure of noise sensitivity for the output force transmitted to the joints between the body and chassis. The principle of vibro-acoustic reciprocity is often utilized in the measurement of NTF. One difficulty in using the volume source is that most of the previously proposed methods require the knowledge of the volume velocity of the acoustic source in advance. A new method proposed in the present work does not require any calculation related with the volume velocity of the acoustic source, but still yields even more accurate results both in the amplitude and phase of the NTF. In the present work, the new method is applied to obtain NTF data for a midsize sedan.

Design Sensitivity Analysis of an Engine Mount System using the Multi-Domain FRF-based Substructuring Method (다중 전달함수합성 법을 이용한 엔진마운트 시스템의 설계민감도 해석)

  • 이두호;황우석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.237-244
    • /
    • 2002
  • Analyzing acoustic-structural systems such as automobiles and aircraft, the FRF-based substructuring (FBS) method is one of the most powerful tools. In this paper, a general procedure for the parametric sensitivity analysis of vibro-acoustic problems has been presented using the multi-domain FRF-based substructuring formulation. For an acoustic-structural system sub-structured by multiple domains, the substructuring formulation gives the reaction farces on the interface boundaries. The design sensitivity formula is obtained from the direct differentiation of the reaction force expression with respect to the design vector. As a practical application, the proposed design sensitivity formula is applied to an engine mount system of passenger car. An objective of the problem is to identify the most effective engine mounts and bushes in minimizing the interior noise over the concerned rpm range. The comparison of the sensitivity results with those of the finite difference method shows excellent agreement. In addition, stiffness modifications of the mounts and bushes identified through the design sensitivity analysis lead to a successful decrease of the interior noise. This results show usefulness of the present method very well.

The Study on the Analysis of the Acoustic Transfer Function for Reducing the Structure-borne Noise (고체전달음 저감을 위한 음향전달 특성해석에 관한 연구)

  • Kim, K.M.
    • Journal of Power System Engineering
    • /
    • v.6 no.3
    • /
    • pp.57-63
    • /
    • 2002
  • This paper describes the acoustic analysis of mid duty truck. The focus of the analysis is on structure borne engine noise with major contributions of 2nd order. It has been previously recognized that the noise contribution of each transfer path of structure borne noise can be varied with the charateristics of each mounts and vibro acoustic sensitivity of car body. The structure of car body will be split up into three major sub components, which are modeled separately, the engine, the frame and the cab. The acoustic performance is evaluated on three levels: engine to frame transfer, frame to cab transfer, and panel contribution from cab to driver. In order to perform these analyses, analytical models are created for the engine, frame, cab and acoustic cavity. The models are linked through a coupled fluid structure calculation, and through FRF Based Substructuring for the structural couplings. Based on the structural coupling calculations, a transfer path analysis is performed to identify the most important transfer paths. These paths are then the focussing points for applying modifications to the structure or the mount system. Finally, a number of modification are proposed and their effect is quantified.

  • PDF

Identification of Dynamic Joint Characteristics Using a Multi-domain FRF-based Substructuring Method (다중 전달함수합성법을 이용한 진동시스템의 결합부 특성 값 동정)

  • 이두호;황우석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.501-509
    • /
    • 2003
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared for the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate even when applied to realistic problems.

  • PDF

A Study on Optimal Design of Panel Shape of a Body Structure for Reduction of Interior Noise

  • Kim, Hyo-Sig;Yoon, Seong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.694-698
    • /
    • 2006
  • This paper presents an optimal design process using beads on a body panel to improve interior noise of a passenger vehicle. Except modification of structural members, it is difficult to find effective countermeasures that can work for the intermediate frequency range from 100 Hz to 300 Hz which lies between the booming and low medium frequency. In this study, it is a major goal to find additional counter-measures for this intermediate frequency range by performing optimal design of beads on body panels. The proposed method for design optimization consists of 4 sub-steps, that is, a) problem definition, b) cause analysis, c) countermeasure development and d) validation. The objective function is minimization of interior noise level. The major design variables are the geometrical shape of a bead and combination of beads on the critical panels. Sensitivity analysis and optimization are performed according to the predefined process for an optimal design. It is verified that the proposed design decreases the level of noise transfer function above 5 dB.

  • PDF

Identification of Dynamic Joint Characteristics Using a Multi-domain FRF- based Substructuring Method (전달함수 다중합성법을 이용한 진동시스템의 결합부 특성값 동정)

  • 이두호;황우석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.635-644
    • /
    • 2004
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared f3r the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate far realistic problems.

  • PDF

Identification of Dynamic Joint Characteristics Using a Multi-domain FRF-based Substructuring Method (전달함수 다중합성법을 이용한 진동시스템의 결합부 특성값 추정)

  • 황우석;이두호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.536-545
    • /
    • 2004
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared for the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, the stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate for realistic problems.