• Title/Summary/Keyword: Vibrissa afferent

Search Result 2, Processing Time 0.016 seconds

Quantitative Analysis of Neurotransmitters in the Endings Presynaptic to Vibrissa Afferent Terminals in the Cat Trigeminal Caudal Nucleus (고양이 삼차신경꼬리핵에서 저역치기계자극수용기 유래 들신경종말의 연접이전종말이 함유하는 신경전달물질에 대한 정량적 분석)

  • Kim, Yun-Sook;Mun, Cheol-Ju;Cho, Jin-Hyun;Bae, Jin-Young;Na, Yeon-Kyung;Bok, Hye-Jeong;Bae, Yong-Chul;Paik, Sang-Kyoo
    • Applied Microscopy
    • /
    • v.42 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • The goal of this study was to identify neurotransmitters in endings (p-endings) presynaptic to low-threshold mechanoreceptive vibrissa afferents in the laminae III/IV of cat trigeminal caudal nucleus (Vc). Rapidly-adapting vibrissa afferents were intra-axonally labeled after electrophysiological identification, and postembedding immunogold staining with antisera against ${\gamma}$-aminobutyric acid (GABA) and glycine was performed, followed by quantitative ultrastructural analysis of p-endings presynaptic to the labeled vibrissa afferent terminals. Sixteen p-endings, which are presynaptic to the HRP-labeled vibrissa afferent terminals, were analyzed in this study: Eight p-endings (50%, 8/16) were immunopositive to GABA but immunonegative to glycine (GABA+ p-ending), and remaining 8 p-endings (50%, 8/16) exhibited immunoreactivity to both GABA and glycine. Bouton volume of the p-endings was not significantly different between the two groups. However, the p-endings differed from each other in relative content of GABA and glycine. These findings suggest that low-threshold mechanoreceptive information conveyed through vibrissa afferent at Vc is presynaptically modulated by GABA and/or glycine, and that degree of presynaptic modulation may differ among each vibrissa afferent terminal.

Synaptic Organization of Vibrissa Afferent Terminals in the Trigeminal Interpolar Nucleus (삼차신경중간핵에서 저역치기계자극수용기 유래 들신경섬유 종말의 연접양상)

  • Ahn, Hyoung-Joon;Paik, Sang-Kyoo;Bae, Yong-Chul;Choi, Jong-Hoon;Kim, Chong-Youl
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.1
    • /
    • pp.87-106
    • /
    • 2005
  • In order to evaluate the mechanism of transmission as well as processing of sensory information originating from low-threshold mechanoreceptor in oral and maxillofacial region at primary synaptic region of trigeminal nervous system, vibrissa afferent fibers of adult cat were labeled with intra-axonal HRP injection. Serial sections containing labeled boutons were obtained from the piece of trigeminal interpolar nucleus. Under electron microscope, total 30 labeled boutons were observed, and ultrastructural characteristics, frequency of occurence, synaptic organizations of vibrissa afferent terminals were analysed. The results were as follows: 1. Labeled boutons contained clear, spherical synaptic vesicles with diameter of 45$\sim$55nm. They formed asymmetrical synapse with dendrites showing definite postsynaptic density, larger synaptic cleft, multiple synaptic structures at various regions. With unlabeled axon terminals(p-ending) containing polymorphic synaptic vesicles, they formed symmetrical synapse showing indefinite postsynaptic density and narrower synaptic area. 2. Each labeled bouton formed 1 to 15 synapses, the average of 4.77$\pm$3.37 contacts per labeled bouton, with adjacent neuronal profiles. Relatively complex synaptic organization, which formed synapses with more than 5 neuronal profiles, was observed in a large number(46.7%, n=14) of labeled boutons. 3. Axo-somatic synapse was not observed. The number of axo-dendritic synapse was 1.83$\pm$1.37 per labeled bouton. Majority(85.0%) of axo-dendritic synapses were formed with dendritic shafts, nonprimary dendrites(n=47, 1.57$\pm$1.38/1 bouton), however, synapses formed with primary dendrites(n=6, 0.20$\pm$0.41/1 bouton) or dendritic spines(n=2, 0.07$\pm$0.25/1 bouton) were rare. 4. 76.7%(n=23) of labeled boutons formed axo-axonic synapse (2.93$\pm$2.36/1 bouton) with p-endings containing pleomorphic vesicles. Synaptic triad, in which p-endings formed synapses with labeled boutons and dendrites adjacent to the labeled boutons simultaneoulsy, were also observed in 60.0%(n=18) of labeled boutons. From the above results, vibrissa afferent terminals of adult cat showed distinctive synaptic organization in the trigeminal interpolar nucleus, thus, suggests their correlation with the function of the trigeminal interpolaris nucleus, which participates in processing of complex sensory information such as two-point discrimination and motivational-affective action. Further studies on physiologic functions such as quantitative analysis on ultrastructures of afferent terminals and nerve transmitters participating in presynaptic inhibition are required.