• Title/Summary/Keyword: Vibrio cholerae

Search Result 125, Processing Time 0.034 seconds

Physiological and Ecological Characteristics of Hemolytic Vibrios and Development of Sanitary Countermeasure of Raw Fisheries Foods 3. Growth Factor and Antibiotic Susceptibility of Vibrio cholerae non-O1 FM-3 Isolated from Sea Water (용혈독소를 생산하는 기수성 비브리오균의 생리${\cdot}$생태적 특성과 수산식품의 위생대책 3. 해수에서 분리된 Vibrio cholerae non-O1 FM-3의 생육인자와 항생제 감수성)

  • KIM Shin-Hee;PARK Mi-Yeon;PARK Uk-Yeon;KIM Young-Man;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.4
    • /
    • pp.550-555
    • /
    • 1997
  • Vibrio cholerae non-O1 (V. cholerae non-O1) was previously called nonagglutinable or noncholera vibrios, since it fails to react with polyvalent O1 antisera. This organism is biochemically and genetically indistinguishable from V. cholerae O1 except serological difference. V. cholerae non-O1 strains are often detected in the environment including bays, estuaries, and fresh water, and also found in food. Therefore it is designated food borne bacterium in Japan. However, research papers on V. cholerae non-O1 are very rare in Korea. In order to investigate bacteriological characteristics of V. cholerae non-O1, we isolated V. cholerae non-O1 from the environmental sea water. Among the isolated V. cholerae non-O1 strains, we selected the strain which had the most strong hemolytic activity, named as V. cholerae non-O1 FM-3. The optimum growth conditions of V. cholerae non-O1 FM-3 were $37^{\circ}C$ and pH 8.5 in BHI broth (containing $0.5\%$ sodium chloride), and it grew better than V. cholerae non-O1 ATCC 25872. But both were not able to grow in BHI broth added $5.0\%$ of sodium chloride or adjusted to pH 5.0. According to the experimental results on the susceptibility test against various antibiotics, there were no significant differences between the isolated strain and reference strain (V. cholerae non-O1 ATCC 25872). Most of the antibiotics examined had bacteriostatic action against V. cholerae non-O1 FM-3 while vancomycin, oxacillin, colistin, polymyxin B, and sulfadiazine had no bacteriostatic activity.

  • PDF

Microbial contamination including Vibrio cholerae in fishery auction markets in West Sea, South Korea

  • Choi, Yukyung;Lee, Yewon;Lee, Soomin;Kim, Sejeong;Lee, Jeeyeon;Ha, Jimyeong;Oh, Hyemin;Shin, Il-Shik;Yoon, Yohan
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.11
    • /
    • pp.26.1-26.7
    • /
    • 2019
  • Background: The monitoring of pathogens of fishery auction markets is important to obtain safe fishery products regarding hygiene and sanitation. In this study, aerobic, coliform, Escherichia coli, and Vibrio cholerae were monitored in the fishery products and environmental samples obtained from fishery auction markets. Methods: The fishery products (flounder, octopus, skate, rock cod, sea bass, snail, monkfish, flatfish, comb pen shell, corb shell, conger eel, hairtail, croaker, and pilchard) were placed in filter bags, and the environmental samples (samples from the water tanks at the fishery auction markets, seawater from the fishery distribution vehicles, ice from wooden or plastic boxes, and surface samples from wooden and plastic boxes used for fish storage) were collected. Aerobic bacteria, E. coli, and coliform in the samples were enumerated on aerobic count plates and E. coli/coliform count plates, respectively. For V. cholerae O1 and V. cholerae non-O1 quantification, most probable number (MPN)-PCR analysis was performed. Results: Aerobic and coliform bacteria were detected in most samples, but E. coli was not detected. Wooden boxes were contaminated with high levels of aerobic and coliform bacteria in all seasons (spring, summer, and fall). During fall, V. cholerae non-O1 were detected in snails, hairtails, croakers, flatfishes, pilchards, plastic boxes, and water samples. Conclusions: These results indicate an increased prevalence of V. cholerae contamination in fishery products in fall, including food contact samples, which can be vehicles for cross-contamination.

Application of a Peptide Nucleic Acid-Based Asymmetric Real-Time PCR Method for Rapid Detection of Vibrio cholerae (비브리오 콜레라 신속 검출을 위한 펩티드 핵산 기반 비대칭 real-time PCR 방법의 적용)

  • Kang, Mingyeong;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.117-124
    • /
    • 2019
  • Vibrio cholerae is a very important pathogenic bacterium that has to be monitored in seafood and ships' ballast water. Various methods have been developed to identify this bacterium, yet these methods are time-consuming and have limitations for their sensitivity to detect contamination. The purpose of the present study was to develop a robust and reliable method for identifying V. cholerae. Peptide nucleic acid (PNA) probes were developed to use for PNA-based asymmetrical real-time PCR techniques. The toxigenic Cholera enterotoxin subunit B (ctxB) gene was selected as a target for detecting V. cholerae and the gene was synthesized as a positive template for conventional and real-time PCR. Real-time PCR primers and PNA probes were designed and standard curves were produced for the quantitative analysis. The selected PNA probes reacted specifically to V. cholerae without any ambiguity, even among closely related species, and the detection limit was 0.1 cfu/100 mL. Taken together, the PNA probes and asymmetrical qPCR methods developed in this present study could contribute to the rapid, accurate monitoring of V. cholerae in marine environments, and as well as in seafood and ships' ballast waters.

Seasonal and Spatial Variation of Pathogenic Vibrio Species Isolated from Seawater and Shellfish off the Gyeongnam Coast of Korea in 2013-2016 (2013-2016년 경남 연안 해수 및 패류에서 병원성 비브리오균의 계절적 및 지역적 변동)

  • Park, Kunbawui;Mok, Jong Soo;Kwon, Ji Young;Ryu, A Ra;Shim, Kil Bo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.1
    • /
    • pp.27-34
    • /
    • 2019
  • The seasonal and spatial variation of pathogenic Vibrio species, such as V. parahaemolyticus, V. vulnificus, V. alginolyticus, and V. cholerae were investigated in seawater and in bivalves off the Gyeongnam coast of Korea, which is an important area for shellfish production, during the period 2013-2016. V. parahaemolyticus, V. vulnificus, V. alginolyticus, and V. cholerae were detected in 12.1%, 5.2%, 15.4%, and 0.9% of seawater samples, respectively. V. parahaemolyticus, V. vulnificus, V. alginolyticus, and V. cholera were detected in 21.9%, 7.1%, 12.2%, and 0.0% of shellfish samples, respectively. The Vibrio spp. in seawater and bivalve samples were detected at high levels during the summer to early autumn; however, the levels were low during the winter. Therefore, their occurrence was seasonally dependent and correlated with high water temperature, which is also the biggest factor contributing to foodborne outbreaks associated with Vibrio. Relatively high detection rates of the strains were also found in the sea area that was continually exposed to inland wastewater. Our findings show that continuous monitoring is needed to reveal the patterns of occurrence of these pathogens from marine samples collected off the Korean coast, to reduce seafood-borne outbreaks caused by Vibrio.

Generation and Characterization of Monoclonal Antibodies to the Ogawa Lipopolysaccharide of Vibrio cholerae O1 from Phage-Displayed Human Synthetic Fab Library

  • Kim, Dain;Hong, Jisu;Choi, Yoonjoo;Han, Jemin;Kim, Sangkyu;Jo, Gyunghee;Yoon, Jun-Yeol;Chae, Heesu;Yoon, Hyeseon;Lee, Chankyu;Hong, Hyo Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1760-1768
    • /
    • 2020
  • Vibrio cholerae, cause of the life-threatening diarrheal disease cholera, can be divided into different serogroups based on the structure of its lipopolysaccharide (LPS), which consists of lipid-A, core-polysaccharide and O-antigen polysaccharide (O-PS). The O1 serogroup, the predominant cause of cholera, includes two major serotypes, Inaba and Ogawa. These serotypes are differentiated by the presence of a single 2-O-methyl group in the upstream terminal perosamine of the Ogawa O-PS, which is absent in the Inaba O-PS. To ensure the consistent quality and efficacy of the current cholera vaccines, accurate measurement and characterization of each of these two serotypes is highly important. In this study, we efficiently screened a phage-displayed human synthetic Fab library by bio-panning against Ogawa LPS and finally selected three unique mAbs (D9, E11, and F7) that specifically react with Ogawa LPS. The mAbs bound to Vibrio cholerae vaccine in a dose-dependent fashion. Sequence and structure analyses of antibody paratopes suggest that IgG D9 might have the same fine specificity as that of the murine mAbs, which were shown to bind to the upstream terminal perosamine of Ogawa O-PS, whereas IgGs F7 and E11 showed some different characteristics in the paratopes. To our knowledge, this study is the first to demonstrate the generation of Ogawa-specific mAbs using phage display technology. The mAbs will be useful for identification and quantification of Ogawa LPS in multivalent V. cholerae vaccines.

Distribution of Pathogenic Vibrios in the Aquatic Environment Adjacent to Coastal Areas of South Korea and Analysis of the Environmental Factors Affecting Their Occurrence (2016년도 국내 해양환경내 병원성 비브리오균의 분포 및 해양환경인자간의 상관성 분석)

  • Jeong, Young-Il;Myung, Go-Eun;Choi, Eun-Jin;Soh, Sang-Moon;Park, Gi-Jun;Son, Tae-Jong
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.2
    • /
    • pp.133-142
    • /
    • 2018
  • Objectives: The pathogenic Vibrios genus denotes halophilic bacteria that are distributed in aquatic environments, including both sea and freshwater. Vibrio cholerae, Vibrio vulnificus, and Vibrio parahaemolyticus are the most important species since they can be potent human pathogens and leading causes of septicemia, wound infections, and seafood borne gastroenteritis. The recent emergence of a potential pandemic clone, V. cholera serotype O1 and the cholera outbreak in South Korea in 2016 indicates the importance of consistent surveillance of pathogenic Vibrio genus within coastal areas. Methods: The present study was undertaken to determine where and how vibrios live in the aquatic environment adjacent to coastal areas of South Korea. For this survey, a total of 838 samples were obtained at 35 different sites in South Korean coastal areas during the period from January 2016 to December 2016. Pathogenic vibrios was determined using the real-time PCR method, and its clones were isolated using three selective plating media. We also monitored changes in seawater and atmospheric temperature, salinity, turbidity, and hydrogen ion concentration at the collection points. Results: The total isolation rates of V. vulnificus, V. cholera (non-pathogenic, non-O1, non-O139 serogroups), and V. parahaemolyticus from seawater specimens in 2016 were 14.2, 13.48, and 67.06%, respectively. Conclusions: The isolation rates of pathogenic vibrios genus showed a positive correlation with temperature of seawater and atmosphere but were negatively correlated with salinity and turbidity.

CTX Prophages in Vibrio cholerae O1 Strains

  • Kim, Eun Jin;Lee, Dokyung;Moon, Se Hoon;Lee, Chan Hee;Kim, Dong Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.725-731
    • /
    • 2014
  • The classical biotype strains of the Vibrio cholerae O1 serogroup harbor the biotype-specific cholera-toxin encoding phage (CTX) $CTX^{cla}$, and the El Tor biotype strains contain CTX-1. Although the classical biotype strains have become extinct, a remnant of classical CTX phage is transferred to the El Tor biotype strains. The prototype El Tor strains, which produce the biotype-specific cholera toxin, are now being replaced by atypical El Tor variant strains producing classical biotype cholera toxin. The genome sequences of the CTX phages in atypical El Tor strains indicate that the CTX phages in atypical El Tor strains are a mosaic of $CTX^{cla}$ and CTX-1. Before the emergence of atypical El Tor stains in the early 1990s, unusual pre-seventh pandemic strains were isolated in the US Gulf Coast between 1973 and 1986. These strains have characteristics of atypical El Tor strains since they are El Tor biotype strains containing $CTX^{cla}$, yet the genome sequence of this CTX phage indicates that it is different from $CTX^{cla}$ and is therefore classified separately as $CTX^{US\;Gulf}$.

Physiological and Ecological Characteristics of Hemolytic Vibrios and Development of Sanitary Countermeasure of Raw Fisheries Foods 1. Isolation and Identification of Novel Pathogenic Vibrio sp. Producing Hemolysin (용혈독소를 생산하는 기수성 비브리오균의 생리${\cdot}$생태적 특성과 수산식품의 위생 대책 1. 용혈독소를 생산하는 새로운 병원성 Vibrio sp.의 분리와 동정)

  • KIM Young-Man;CHOI Gil-Bae;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.3
    • /
    • pp.361-366
    • /
    • 1997
  • To determine the physiological, biochemical characteristics and toxicity of hemolysin produced by a novel sucrose positive Vibrio (Vibrio sp. D5) isolated from estuary of Kum river, it was compared with already known sucrose positive Vibrio. Salinity, pH, temperature and conductivity of place where Vibrio sp. D5 was isolated were $4.7\%_{\circ},\;7.6,\;24^{\circ}C$ and $7800{\mu}MHOS$, respectively. Physiological and biochemical characteristics distingiushed Vibrio sp. D5 from other sucrose positive Vibrio: V. alginoipicus, V. cholerae, V. cincinnatiensis, V. fluvialis, V. furnissii and V. metschnikovii. The range of salinity and pH for growth of Vibrio sp. D5 were $0.5\%\~7.5\%$ and $4.5\~9.5$, respectively. Vibrio sp. D5 exhibited typical yellow colony on TCBS agar plate and curved rod type upon transmission electron microscopy (TEM). Vibrio sp. D5 had lethal toxicity against mouse in case of intraperitoneal injection with its culture and showed hemolysin activity on human blood agar and sheep blood agar. Ubrio sp. D5 also demonstrated vascular permeability activity toward rat. From the above results, Vibrio sp. D5 was ascertained to be a novel pathogenic Vibrio.

  • PDF