Browse > Article
http://dx.doi.org/10.5762/KAIS.2019.20.12.117

Application of a Peptide Nucleic Acid-Based Asymmetric Real-Time PCR Method for Rapid Detection of Vibrio cholerae  

Kang, Mingyeong (Ecological Risk Research Division, Korea Institute of Ocean Science and Technology)
Lee, Taek-Kyun (Ecological Risk Research Division, Korea Institute of Ocean Science and Technology)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.20, no.12, 2019 , pp. 117-124 More about this Journal
Abstract
Vibrio cholerae is a very important pathogenic bacterium that has to be monitored in seafood and ships' ballast water. Various methods have been developed to identify this bacterium, yet these methods are time-consuming and have limitations for their sensitivity to detect contamination. The purpose of the present study was to develop a robust and reliable method for identifying V. cholerae. Peptide nucleic acid (PNA) probes were developed to use for PNA-based asymmetrical real-time PCR techniques. The toxigenic Cholera enterotoxin subunit B (ctxB) gene was selected as a target for detecting V. cholerae and the gene was synthesized as a positive template for conventional and real-time PCR. Real-time PCR primers and PNA probes were designed and standard curves were produced for the quantitative analysis. The selected PNA probes reacted specifically to V. cholerae without any ambiguity, even among closely related species, and the detection limit was 0.1 cfu/100 mL. Taken together, the PNA probes and asymmetrical qPCR methods developed in this present study could contribute to the rapid, accurate monitoring of V. cholerae in marine environments, and as well as in seafood and ships' ballast waters.
Keywords
Vibrio Cholerae; Cholera Enterotoxin Subunit B (ctxB); Peptide Nucleic Acid; Asymmetrical qPCR; Monitoring;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Choi, Y.J., H.S. Kim, S.H. Lee, J.S. Park, H.S. Nam, H.J. Kim, C.J. Kim, D.J. Jeong, K.S. Park, and K.A. Baek, "Evaluation of peptide nucleic acid array for the detection of hepatitis B virus mutations associated with antiviral resistance", Archives of virology, Vol.156, No.9, pp.1517-24, 2011. DOI: https://doi.org/10.1007/s00705-011-1019-7   DOI
2 Kim, J.W., Y.J. Choi, H.J. Kim, J.S. Park, H.S. Nam, Y. Hwangbo, D.U. Kim, and K.S. Park, "Comparison of PNA probe-based real-time PCR and Cobas TaqMan MTB for detection of MTBC", BioChip Journal, Vol.7, No.2, pp.85-88, 2013. DOI: https://doi.org/10.1007/s13206-013-7201-0   DOI
3 Cerqueira, L., N.F. Azevedo, C. Almeida, T. Jardim, C.W. Keevil, and M.J. Vieira, "DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH)", International journal of molecular sciences, Vol.9, No.10, pp.1944-60, 2008. DOI: https://doi.org/10.3390/ijms9101944   DOI
4 Peleg, A.Y., Y. Tilahun, M.J. Fiandaca, E.M. D'Agata, L. Venkataraman, R.C. Moellering, Jr., and G.M. Eliopoulos, "Utility of peptide nucleic acid fluorescence in situ hybridization for rapid detection of Acinetobacter spp. and Pseudomonas aeruginosa", Journal of clinical microbiology, Vol.47, No.3, pp.830-2, 2009. DOI: https://doi.org/10.1128/jcm.01724-08   DOI
5 Jeong, S., J.O. Kim, S.H. Jeong, I.K. Bae, and W. Song, "Evaluation of peptide nucleic acid-mediated multiplex real-time PCR kits for rapid detection of carbapenemase genes in gram-negative clinical isolates", Journal of microbiological methods, Vol.113, pp.4-9, 2015. DOI: https://doi.org/10.1016/j.mimet.2015.03.019   DOI
6 Sakai, J., T. Maeda, N. Tarumoto, K. Misawa, S. Tamura, K. Imai, T. Yamaguchi, S. Iwata, T. Murakami, and S. Maesaki, "A novel detection procedure for mutations in the 23S rRNA gene of Mycoplasma pneumoniae with peptide nucleic acidmediated loop-mediated isothermal amplification assay", Journal of microbiological methods, Vol.141, pp.90-96, 2017. DOI: https://doi.org/10.1016/j.mimet.2017.08.009   DOI
7 D'Agata, R., M.C. Giuffrida, and G. Spoto, "Peptide Nucleic Acid-Based Biosensors for Cancer Diagnosis", Molecules (Basel, Switzerland), Vol.22, No.11, 2017. DOI: https://doi.org/10.3390/molecules22111951
8 Patel, N., D. Miller, N. Relhan, and H.W. Flynn, Jr., "Peptide Nucleic Acid-Fluorescence In Situ Hybridization for Detection of Staphylococci From Endophthalmitis Isolates: A Proof-of-Concept Study", Investigative ophthalmology & visual science, Vol.58, No.10, pp.4307-4309, 2017. DOI: https://doi.org/10.1167/iovs.17-21535   DOI
9 Nielsen, P.E., M. Egholm, R.H. Berg, and O. Buchardt, "Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide", Science (New York, N.Y.), Vol.254, No.5037, pp.1497-500, 1991. DOI: https://doi.org/10.1126/science.1962210   DOI
10 Nielsen, P.E., "Peptide nucleic acids (PNA) in chemical biology and drug discovery", Chemistry & biodiversity, Vol.7, No.4, pp.786-804, 2010. DOI: https://doi.org/10.1002/cbdv.201000005   DOI
11 Corradini, R., "Special Issue: Molecular Properties and the Applications of Peptide Nucleic Acids", Molecules (Basel, Switzerland), Vol.23, No.8, 2018. DOI: https://doi.org/10.3390/molecules23081977
12 Bhuiyan, N.A., S. Nusrin, M. Alam, M. Morita, H. Watanabe, T. Ramamurthy, A. Cravioto, and G.B. Nair, "Changing genotypes of cholera toxin (CT) of Vibrio cholerae O139 in Bangladesh and description of three new CT genotypes", FEMS immunology and medical microbiology, Vol.57, No.2, pp.136-41, 2009. DOI: https://doi.org/10.1111/j.1574-695X.2009.00590.x   DOI
13 Kumar, P. and S. Thomas, "Classical ctxB gene in Vibrio cholerae O1 and O56 serogroups from Kerala, South India", Journal of medical microbiology, Vol.60, No.Pt 4, pp.559-60, 2011. DOI: https://doi.org/10.1099/jmm.0.024752-0   DOI
14 Darling, J.A. and R.M. Frederick, "Nucleic acids-based tools for ballast water surveillance, monitoring, and research", Journal of sea research, Vol.133, pp.43-52, 2018. DOI: https://doi.org/10.1016/j.seares.2017.02.005   DOI
15 Faruque, S.M. and G.B. Nair, "Molecular ecology of toxigenic Vibrio cholerae", Microbiology and immunology, Vol.46, No.2, pp.59-66, 2002. DOI: https://doi.org/10.1111/j.1348-0421.2002.tb02659.x   DOI
16 Farmer III JJ, J.J., Brenner FW, Cameron DN, Birkhead KM, Bergey's Manual(R) of Systematic Bacteriology. p.494-546, Springer US, 2005. DOI: https://doi.org/10.1007/0-387-28022-7
17 Messelhausser, U., J. Colditz, D. Tharigen, W. Kleih, C. Holler, and U. Busch, "Detection and differentiation of Vibrio spp. in seafood and fish samples with cultural and molecular methods", International journal of food microbiology, Vol.142, No.3, pp.360-4, 2010. DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.07.020   DOI
18 Chen, A., M.N. Tamburri, R.R. Colwell, and A. Huq, "Potential application of SMART II for Vibrio cholerae O1 and O139 detection in ship's ballast water", Marine pollution bulletin, Vol.136, pp.79-83, 2018. DOI: https://doi.org/10.1016/j.marpolbul.2018.08.029   DOI
19 Kim, I.H., B.S. Kim, K.S. Lee, I.J. Kim, J.S. Son, and K.S. Kim, "Identification of virulence factors in vibrio vulnificus by comparative transcriptomic analyses between clinical and environmental isolates using cDNA microarray", Journal of microbiology and biotechnology, Vol.21, No.12, pp.1228-35, 2011. DOI: https://doi.org/10.4014/jmb.1111.11016   DOI
20 Li, S., H. Liu, Y. Deng, L. Lin, and N. He, "Development of a magnetic nanoparticles microarray for simultaneous and simple detection of foodborne pathogens", Journal of biomedical nanotechnology, Vol.9, No.7, pp.1254-60, 2013. DOI: https://doi.org/10.1166/jbn.2013.1610   DOI
21 Engku Nur Syafirah, E.A.R., A.B. Nurul Najian, P.C. Foo, M.R. Mohd Ali, M. Mohamed, and C.Y. Yean, "An ambient temperature stable and ready-to-use loop-mediated isothermal amplification assay for detection of toxigenic Vibrio cholerae in outbreak settings", Acta tropica, Vol.182, pp.223-231, 2018. DOI: https://doi.org/10.1016/j.actatropica.2018.03.004   DOI
22 Greig, D.R., T.J. Hickey, M.D. Boxall, H. Begum, A. Gentle, C. Jenkins, and M.A. Chattaway, "A real-time multiplex PCR for the identification and typing of Vibrio cholerae", Diagnostic microbiology and infectious disease, Vol.90, No.3, pp.171-176, 2018. DOI: https://doi.org/10.1016/j.actatropica.2018.03.004   DOI
23 Noh, E.S., H.S. Kang, E.M. Kim, J.K. Noh, J.Y. Park, T.-J. Choi, and J.-H. Kang, "Rapid Differentiation of Seven Species of Anguilla Using PNA Clamping-based Asymmetric PCR with Fluorescence Melting Curve Analysis", BioChip Journal, Vol.12, No.1, pp.46-51, 2018. DOI: https://doi.org/10.1007/s13206-017-2106-y   DOI
24 Awasthi, S.P., N. Chowdhury, S.B. Neogi, A. Hinenoya, N. Hatanaka, G. Chowdhury, T. Ramamurthy, and S. Yamasaki, "Development of a multiplex PCR assay for the detection of major virulence genes in Vibrio cholerae including non-O1 and non-O139 serogroups", Journal of microbiological methods, Vol.157, pp.54-58, 2019. DOI: https://doi.org/10.1016/j.mimet.2018.12.012   DOI
25 Zhang, X., K. Li, S. Wu, J. Shuai, and W. Fang, "Peptide nucleic acid fluorescence in-situ hybridization for identification of Vibrio spp. in aquatic products and environments", International journal of food microbiology, Vol.206, pp.39-44, 2015. DOI: https://doi.org/10.1016/j.ijfoodmicro.2015.04.017   DOI