• 제목/요약/키워드: Vibrational intensity

검색결과 62건 처리시간 0.02초

음향 가진된 밀폐계의 유연한 평판의 음향 방사 특성에 관한 연구 (Acoustic Radiation Characteristics from Flexible Steel Plate Excited by Acoustic Loading in an Rectangular enclosure)

  • 김상헌;안지훈;오재응
    • 소음진동
    • /
    • 제7권3호
    • /
    • pp.457-466
    • /
    • 1997
  • The experimental and analytical study was conducted to determine the noise transmission characteristics of acoustically loaded steel plate of rectangular enclosure and to investigate the sound radiation characteristics through out the enclosure. The vibrations of acoustically loaded plate give rise to sound radiations and generate the reverberant space that the sound field exists very close to a vibrating plate. Acoustic transmission loss is measured from the incident intensity into the plate and the transmitted intensity through out the plate. Sound radiation patterns are measured from both acoustic intensity technique and surface intensity technique. Those resultant patterns and vibrational modes are vital in understanding the relations between vibration and noise in the near field out of vibrating plate.

  • PDF

Computation of structural intensity for plates with multiple cutouts

  • Khun, M.S.;Lee, H.P.;Lim, S.P.
    • Structural Engineering and Mechanics
    • /
    • 제16권5호
    • /
    • pp.627-641
    • /
    • 2003
  • The structural intensity fields of rectangular plates with single cutout and multiple cutouts are studied. The main objective is to examine the effect of the presence of cutouts on the flow pattern of vibrational energy from the source to the sink on a rectangular plate. The computation of the structural intensity is carried out using the finite element method. The magnitude of energy flow is significantly larger at the edges on the plate near the cutout boundary parallel to the energy flow. The effects of cutouts with different shape and size at different positions on structural intensity of a rectangular plate are presented and discussed. A case study on a plate with two cutouts is also presented.

연성보의 진동 인텐시티 측정 (Measurements of Vibration Intensity of a Coupled Beam)

  • 이효행;김창렬;길현권;이용현;홍석윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.728-731
    • /
    • 2005
  • The objective of this paper is to perform measurements of vibration intensity of a coupled beam. The propagation of flexural waves generates the out of plane vibration of the coupled beam. The longitudinal waves are generated due to the mode conversion at the structural joint of the coupled beam. The propagation of longitudinal waves generates the in plane vibration of the coupled beam. In order to identify the direction of vibrational power on the coupled beam, the in plane vibration intensity as well as the out of plane vibration intensity needs to be measured. The cross spectral method has been implemented to measure the in-plane vibration intensity as well as out of plane vibration intensity. The results shelved that the experimental method can be effectively used to measure the in-plane vibration intensity as well as the out of plane vibration intensity of coupled beams.

  • PDF

Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force

  • Mirjavadi, Seyed Sajad;Nikookar, Mohammad;Mollaee, Saeed;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S.
    • Advances in nano research
    • /
    • 제9권1호
    • /
    • pp.47-58
    • /
    • 2020
  • The present paper deals with analyzing nonlinear forced vibrational behaviors of nonlocal multi-phase piezo-magnetic beam rested on elastic substrate and subjected to an excitation of elliptic type. The applied elliptic force may be presented as a Fourier series expansion of Jacobi elliptic functions. The considered multi-phase smart material is based on a composition of piezoelectric and magnetic constituents with desirable percentages. Additionally, the equilibrium equations of nanobeam with piezo-magnetic properties are derived utilizing Hamilton's principle and von-Kármán geometric nonlinearity. Then, an exact solution based on Jacobi elliptic functions has been provided to obtain nonlinear vibrational frequencies. It is found that nonlinear vibrational behaviors of the nanobeam are dependent on the magnitudes of induced electrical voltages, magnetic field intensity, elliptic modulus, force magnitude and elastic substrate parameters.

Structural intensity analysis of a large container carrier under harmonic excitations of propulsion system

  • Cho, Dae-Seung;Kim, Kyung-Soo;Kim, Byung-Hwa
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제2권2호
    • /
    • pp.87-95
    • /
    • 2010
  • The structural intensity analysis, which calculates the magnitude and direction of vibrational energy flow from vibratory velocity and internal force at any point of a structure, can give information on dominant transmission paths, positions of sources and sinks of vibration energy. This paper presents a numerical simulation system for structural intensity analysis and visualization to apply for ship structures based on the finite element method. The system consists of a general purpose finite element analysis program MSC/Nastran, its pre- and post-processors and an in-house program module to calculate structural intensity using the model data and its forced vibration analysis results. Using the system, the structural intensity analysis for a 4,100 TEU container carrier is carried out to visualize structural intensity fields on the global ship structure and to investigate dominant energy flow paths from harmonic excitation sources to superstructure at resonant hull girder and superstructure modes.

자기장 및 열하중을 받는 복합재료 판의 자유진동응답 (Free Vibration Responses of Composite Plates Subjected to Transverse Magnetic and Thermal Fields)

  • 김성균;최종운;김영준;박상윤;송오섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.136-142
    • /
    • 2011
  • The equations of motion for composite plates incorporating magneto-thermo-elastic effects have been derived via Hamilton's principle. In order to get the insight into the implications of a number of geometrical and physical features of the system, the vibrational responses of finite composite rectangular plates immersed in a transversal magnetic field are investigated by applying the extended Galerkin method. The vibration response characteristics of a composite plate are exploited in connection with the magnetic field intensity, thermal load, and electric conductivity of fibrous composite materials. Some pertinent conclusions, which highlight the various effects induced by the magneto-thermo-elastic couplings, are outlined.

  • PDF

Vibrational Spectroscopic Study of Benzenethiol on Silver Surface

  • Yi, Whi-Kun;Park, Cheol-Woo;Kim, Myung-Soo;Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권4호
    • /
    • pp.291-296
    • /
    • 1987
  • Vibrational spectroscopy has been applied to the benzenethiol molecule adsorbed on the silver surface. The results of infrared and Raman spectral studies have led to the conclusion that benzenethiol is chemisorbed dissociatively on the silver surface by rupture of S-H bond and the benzenethiolate formed upon adsorption is bound to silver via its sulfur atom. It seemed more likely that benzenethiol is adsorbed as being inclined to the silver surface. On contact with oxygen, the geometry of the adsorbed species appeared to bear a resemblance to that of silver benzenethiolate salt. The infrared bands of adsorbed species remained with little decrease of intensity even after the prolonged evacuation at 673 K, indicating that benzenethiol is very strongly chemisorbred to the silver surface.

Measurement of red blood cell aggregation by analysis of light transmission in a pressure-driven slit flow system

  • Shin, S.;Park, M.S.;Jang, J.H.;Ky, Y.H.;Suh, J.S.
    • Korea-Australia Rheology Journal
    • /
    • 제16권3호
    • /
    • pp.129-134
    • /
    • 2004
  • The aggregation characteristics of red blood cells (RBCs) were measured using a newly developed light-transmission slit rheometer. Conventional methods of RBC disaggregation such as the rotational Couette system were replaced with a pressure-driven slit flow system with a vibrational mechanism. Using a vibration generator, one can disaggregate the RBC aggregates stored in the slit. While shear stress decreases exponentially, instantaneous pressure and the transmitted light intensity were measured over time. Applying an abrupt shearing flow after disaggregation caused a rapid elongation of the RBCs followed by loss of elongation with the decreasing shear stress. While the shear stress is further decreasing, the RBCs start to re-aggregate and the corresponding transmitted intensity increases with time, from which the aggregation indices can be obtained using a curve-fitting program.

파워흐름유한요소해석 프로그램의 특성과 이를 이용한 자동차 진동해석 (Characteristics of PFFEM program and vibration analysis of automobile using the developed program)

  • 박영호;홍석윤;서성훈;길현권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1083-1088
    • /
    • 2001
  • To predict vibrational energy density and intensity of complex structures in medium-to-high frequency ranges, Power Flow Finite Element Method(PFFEM) programs for the plate, beam and some coupled structural elements are developed at present. The vibration energy density and intensity of foreign vehicle is predicted successfully with FE full model of 60,000 DOF using the developed PFFEM program.

  • PDF

Using structural intensity approach to characterize vibro-acoustic behavior of the cylindrical shell structure

  • Wang, Yuran;Huang, Rong;Liu, Zishun
    • Coupled systems mechanics
    • /
    • 제7권3호
    • /
    • pp.297-319
    • /
    • 2018
  • In this paper, the vibro-acoustic behaviors of vibrational cylindrical shells are investigated by using structural intensity approach. The reducing interior noise method for vibrating cylindrical shells is proposed by altering and redistributing the structural intensity through changing the damping property of the structure. The concept of proposed novel method is based on the properties of structural intensity distribution on cylindrical shells under different load and damping conditions, which can reflects power flow in the structures. In the study, the modal formulas of structural intensity are developed for the steady state vibration of cylindrical shell structures. The detailed formulas of structural intensity are derived by substituting modal quantities, in which the effect of main parameters such as weight coefficients and distribution functions on structure intensity are analyzed and discussed. Numerical simulations are first carried out based on the structural intensity analytical solutions of modal formulas. Through simulating the coupling vibration and acoustical radiation problems of cylindrical shell, the relationship between vibro-acoustic and structural intensity distribution is derived. We find that for cylindrical shell, by properly arranging damping conditions, the structural intensity can be efficiently changed and further the noise property can be improved. The proposed methodology has important implications and potential applications in the vibration and noise control of fuselage structure.