• 제목/요약/키워드: Vibrational Energy

검색결과 290건 처리시간 0.023초

HF와 Ar 衝突中의 振動-回轉遷移 (Simultaneous Vibrational and Rotational Transitions in HF + Ar)

  • 신형규
    • 대한화학회지
    • /
    • 제18권1호
    • /
    • pp.12-24
    • /
    • 1974
  • HF의 振動的 1${\rightarrow}$0 遷移過程에 回轉運動이 重要한 影響을 미친다는 問題를 半古典的 三次元方法으로 硏究하였다. HF의 振動 energy의 大部分이 回轉運動으로 移轉되는 것을 理論的으로 祥細히 計算하였다. 振動 energy가 竝進運動으로 移轉한다는 從來의 理論으로는 HF의 振動的 relaxation 過程을 設明할 수 없음을 指摘하였다.

  • PDF

Analysis of Intramolecular Electron Transfer in A Mixed-Valence Cu(Ⅰ)-Cu(Ⅱ) Complex Using the PKS Model

  • So Hyunsoo
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권4호
    • /
    • pp.385-388
    • /
    • 1992
  • The transition probabilities for the thermal intramolecular electron transfer and the optical intervalence transfer band for a symmetric mixed-valence Cu(I)-Cu(II) compound were used to extract the PKS parameters $\varepsilon$ = -1.15, ${\lambda}$ = 2.839, and ${\nu}g$- = 923 $cm^{-1}$. These parameters determine the potential energy surfaces and vibronic energy levels. Three pairs of vibrational levels are below the top of the energy barrier in the lower potential surface. The contribution of each vibrational state to the intramolecular electron transfer was calculated. It is shown that the three pairs of vibrational states below the top of the barrier are responsible for most of the electron transfer at 261-306 K. So the intramolecular electron transfer in this system is a tunneling process. The transition probability exhibits the usual high-temperature Arrhenius behavior, but at lower temperature falls off to a temperature-independent value as tunneling from the lowest levels becomes the limiting process.

Vibrational Relaxation of Cyanate or Thiocyanate Bound to Ferric Heme Proteins Studied by Femtosecond Infrared Spectroscopy

  • Park, Seongchul;Park, Jaeheung;Lin, Han-Wei;Lim, Manho
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.758-764
    • /
    • 2014
  • Femtosecond vibrational spectroscopy was used to measure the vibrational population relaxation time ($T_1$) of different anions bound to ferric myoglobin ($Mb^{III}$) and hemoglobin ($Hb_{III}$) in $D_2O$ at 293 K. The $T_1$ values of the anti-symmetric stretching (${\nu}_1$) mode of NCS in the $NCS^-$ bound to $Mb^{III}$ ($Mb^{III}$NCS) and $Hb_{III}$ ($Hb_{III}$NCS) in $D_2O$ are $7.2{\pm}0.2$ and $6.6{\pm}0.2$ ps, respectively, which are smaller than that of free NCS. in $D_2O$ (18.3 ps). The $T_1$ values of the ${\nu}_1$ mode of NCO in the $NCO^-$ bound to $Mb^{III}$ ($Mb^{III}$NCO) and $Hb_{III}$ ($Hb_{III}$NCO) in $D_2O$ are $2.4{\pm}0.2$ and $2.6{\pm}0.2$ ps, respectively, which are larger than that of free $NCO^-$ in $D_2O$ ($1.9{\pm}0.2$ ps). The smaller $T_1$ values of the ${\nu}_1$ mode of the heme-bound NCS suggest that intramolecular vibrational relaxation (VR) is the dominant relaxation pathway for the excess vibrational energy. On the other hand, the longer $T_1$ values of the ${\nu}_1$ mode of the heme-bound NCO suggest that intermolecular VR is the dominant relaxation pathway for the excess vibrational energy in the ${\nu}_1$ mode of $NCO^-$ in $D_2O$, and that intramolecular VR becomes more important in the vibrational energy dissipation of the ${\nu}_1$ mode of NCO in $Mb^{III}$NCO and $Hb_{III}$NCO.

진동원으로부터 지지구조물에 전달되는 진동 파워의 추정방법 (Estimation of Vibrational Power Supplied From Vibration Source to Supporting Structure)

  • 김재철;이종원
    • 소음진동
    • /
    • 제8권2호
    • /
    • pp.306-312
    • /
    • 1998
  • This paper proposes a method for estimating the vibrational power supplied by a machine that generates excitation force to its supporting structure via the coupling points. The basis of the method is that the vibrational power can be calculated using the mechanical impedance and the velocity at the coupling points on the supporting structure. First, a method is described to estimate the mobilities at the coupling points when the machine is not separable from the supporting structure, then the vibrational power is calculated using the estimated mobilities and measured velocities at the coupling points. The mobilities are estimated from the result of impulsive testing of the coupled structure. The method is investigated using an experimental model. The estimated and measured values of the mobilities and the vibrational power are compared. It is shown that the estimated values agree well with the measured values.

  • PDF

평판 구조물의 진동 파워흐름해석을 위한 비보존 조인트 개발 (Development of Compliant and Dissipative Joints in Coupled Thin Plates for Vibrational Energy Flow Analysis)

  • 송지훈;홍석윤
    • 한국소음진동공학회논문집
    • /
    • 제18권10호
    • /
    • pp.1082-1090
    • /
    • 2008
  • In this paper, a general solution for the vibrational energy and intensity distribution through a compliant and dissipative joint between plate structures is derived on the basis of energy flow analysis (EFA). The joints are modeled by four sets of springs and dashpots to show their compliancy and dissipation in all four degrees of freedom. First, for the EFA, the power transmission and reflection coefficients for the joint on coupled plate structures connected at arbitrary angles were derived by the wave transmission approach. In numerical applications, EFA is performed using the derived coefficients for coupled plate structures under various joint properties, excitation frequencies, coupling angles, and internal loss factors. Numerical results of the vibrational energy distribution showed that the developed compliant and dissipative joint model successfully predicted the joint characteristics of practical structures vibrating in the medium-to-high frequency ranges. Moreover, the intensity distribution of a compliant and dissipative joint is described.

1차원 및 2차원 구조물의 진동해석을 위한 파워흐름경계요소법의 연구 (Research of Power Flow Boundary Element Method for Vibrational Analysis of One and Two Dimensional Structures)

  • 박도현;홍석윤;이호원;서성훈;길현권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.78-84
    • /
    • 2001
  • In this paper, Power Flow Boundary Element Method(PFBEM) has been developed for one and two dimensional noise and vibration problems in the medium to high frequency ranges. Green functions used for PFBEM are the fundamental solutions of energy governing equations. Both direct and indirect methods of PFBEM have been formulated and numerically applied to predict the vibrational energy density and intensity distributions of simple beams, rectangular plates and L-type plates.

  • PDF

셸 구조물의 중고주파 진동 파워흐름해석 (Power Flow Analysis for Medium-to-High Frequency Vibration of Shell Structures)

  • 박도현;김일환;홍석윤;길현권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1177-1184
    • /
    • 2002
  • In this paper, power flow analysis method on the various types of thin shell has been developed to solve vibrational Problems in the medium to high frequency ranges. Energy governing equations have been derived both for out-of plane and in-plane waves in thin shell. These results have been numerically applied to predict the vibrational energy density and intensity distributions of cylindrical, spherical and doubly-curved shells.

  • PDF

Collision-Induced Electronic Relaxation of Thiophosgene (S₁)

  • 김택수;Choi, Young S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권8호
    • /
    • pp.745-749
    • /
    • 1996
  • Fluorescence from the electronically excited thiophosgene (Cl2CS) in its first excited singlet state (S1) is efficiently quenched by collision. Rates of the collision-induced electronic relaxation were obtained for various vibrational levels in the S1 state by measuring the fluorescence lifetimes. We found that the relaxation process is strongly energy-dependent; the rate consistently increases by a factor of ~40 with the increase of vibrational energy from 0 to 1450 cm-1. Collision-induced intersystem crossing from the S1 to the first triplet state (T1) is attributed to the major process responsible for the electronic relaxation.

Vibrational Relaxation and Fragmentation in Icosahedral (Ar2+)Ar12 Clusters

  • Ree, Jongbaik;Kim, Yoo Hang;Shin, Hyung Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2774-2780
    • /
    • 2014
  • A dynamics study of relaxation and fragmentation of icosahedral argon cluster with a vibrationally excited $Ar_2^+$ (${\nu}$) is presented. Local translation is shown to be responsible for inducing energy flow from the embedded ion to host atoms and fragmentation of the cluster consisting of various low frequency modes. The total potential energy of $(Ar_2^+)Ar_{12}$ is formulated using a building-up procedure of host-guest and host-host interactions. The time dependence of ion-to-host energy transfer is found to be tri-exponential, with the short-time process of ~100 ps contributing most to the overall relaxation process. Relaxation timescales are weakly dependent on both temperature (50-300 K) and initial vibrational excitation (${\nu}$ = 1-4). Nearly 27% of host atoms in the cluster with $Ar_2^+$ (${\nu}$ = 1) fragment immediately after energy flow, the extent increasing to ~43% for ${\nu}$ = 4. The distribution of fragmentation products of $(Ar_2^+)Ar_{12}{\rightarrow}(Ar_2^+)Ar_n+(12-n)Ar$ are peaked around $(Ar_2^+)Ar_8$. The distribution of dissociation times reveals fragmentation from one hemisphere dominates that from the other. This effect is attributed to the initial fragmentation causing a sequential perturbation of adjacent atoms on the same icosahedral five-atom layer.

산화질소 분자 퍼텐셜에 적용한 Numerov-Cooley 방법 (Numerov-Cooley Method on a Potential of NO Molecule)

  • 조선욱
    • 대한화학회지
    • /
    • 제51권2호
    • /
    • pp.125-128
    • /
    • 2007
  • Numerov-Cooley 방법을 적용할 때 양쪽에서 전파된 파동함수를 연결시키는 것이 관건인데, 잘 알려진 스프레드시트인 엑셀에서 해찾기 도구를 활용하여 Numerov 방법의 파동함수 연결을 해결하였다. 한쪽방향으로 전파하여 얻은 에너지 값과 반대쪽으로 전파하여 얻은 에너지 값들의 평균을 이용해 상태함수의 고유값을 정하는 방법도 같은 결과를 보임을 확인하였다. 산화질소 분자 퍼텐셜 위에서 이 방법을 적용하였고, 진동에너지에 따른 원자간 평균거리와 터널링 변화를 계산하였다. 진동에너지가 증가하면서 분자 결합 길이는 비례하여 늘어나지만, 터널 효과는 모든 진동 상태가 어느 정도의 확률을 가지며 에너지 증가에 둔감하다는 것을 확인하였다.