• 제목/요약/키워드: Vibrational

검색결과 1,112건 처리시간 0.033초

2차원 진동 미세가공을 위한 가진테이블 개발 (Development of Excitation Table for 2-dimensional Vibrational Micro Cutting)

  • 김기대;이강희
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.62-67
    • /
    • 2012
  • To realize 2-dimensional vibrational micro cutting in milling and drilling, etc. where the tools rotate, it could be a promising way to vibrate a workpiece instead of a rotating tool itself. In this study, an excitation work-table was developed using two piezoelectric materials orthogonally arranged. The trochoidal trajectory of a cutting tool which is necessary for 2D vibrational cutting is enabled in the excitation condition of higher excitation frequency and larger amplitude of vibration and the cutting condition of smaller diameter of cutting tool and lower spindle speed. The various trochoidal trajectories of a cutting tool could be generated in the excitation work-table by adjusting the input voltages to two piezoelectric materials and the phase between the two voltages and the trajectories could be readily used for the 2D vibrational micro cutting.

진동원으로부터 지지구조물에 전달되는 진동 파워의 추정방법 (Study on the Estimation of Vibrational Power Supplied From Source to Supporting Structure)

  • 김재철;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.379-384
    • /
    • 1997
  • This paper proposes a method for estimating the vibrational power supplied by a machine that generates excitation force to its supporting structure via the coupling points. The basis of the method is that the vibrational power can be calculated using the mechanical impedance and the velocity at the coupling points on the supporting structure. First, a method is described to estimate the mobilities at the coupling points when the machine is not separable from the supporting structure, then the vibrational power is calculated using the estimated mobilities and measured velocities at the coupling points. The mobilities are estimated from the result of impulsive testing of the coupled structure. The method is investigated using an experimental model. The estimated and measured values of the mobilities and the vibrational power are compared. It is shown that the estimated values agree well with the measured values.

  • PDF

이산계와 탄성 지지보의 동응답 및 진동 인텐시티 저감을 위한 목적함수 해석 (Analyses of the Cost function for the Reductions of the Dynamic Response and the Vibrational Intensity of a Discrete System and Its Elastic Supporting Beam)

  • 김기만;최성대
    • 한국소음진동공학회논문집
    • /
    • 제20권1호
    • /
    • pp.83-91
    • /
    • 2010
  • In this paper, the feasibility of the cost function having two control factors were discussed in compared to two others which has one different control factor respectively. As of the control factors, the dynamic response of a discrete system and the vibrational intensity at the reference point which is the connecting point of a discrete system to a flexible beam were controlled actively by the control force obtained from the minimization of the cost function. The method of feedforward control was employed for the control strategy. The reduction levels of the dynamic response of a discrete system and the vibrational intensity at a reference point, and also the input power induced by the control force were evaluated numerically in cases of the three different cost functions. In comparison with the results obtained from the cost functions of one control factor, which is the dynamic response or the vibrational intensity, in most cases of the cost function of two control factors the better or similar results were obtained. As a conclusion, it is surely noted that both the dynamic response and the vibrational intensity of the vibrating system be controlled up to the expected level by using the single cost function having two control factors.

Experimental Determinations of Coherent Multidimensional Vibrational Spectroscopy

  • Besemann, Daniel;Condon, Nicholas;Meyer, Kent;Zhao, Wei;Wright, John C.
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권8호
    • /
    • pp.1119-1125
    • /
    • 2003
  • Coherent multidimensional vibrational spectroscopy is a new technique for establishing correlations between features in vibrational spectra that are caused by intra- and intermolecular interactions. These interactions cause cross-peaks between vibrational transitions that reflect the coupling. In this paper, we use Doubly Vibrationally Enhanced Infrared Spectroscopy (DOVE-IR) and DOVE-Raman processes to obtain coherent two dimensional vibrational spectra. The spectra are fitted to obtain the dephasing rates and third order susceptibilities $(χ^{(3)})$ for the nonlinear processes. We show that the DOVE $χ^{(3)}$ values are directly related to the molar absorptivities and Raman $χ^{(3)}$. We then use these relationships to obtain estimates for the $χ^{(3)}$ of the stimulated photon echo and $χ^{(5)}$ of the six wave mixing spectroscopies, respectively. We also predict the ratio of the cascaded four wave mixing signal to the six wave mixing signal.

Development of Automatic Reactor Internal Vibration Monitoring System Using Fuzzy Peak Detection and Vibration Mode Decision Method

  • Kang, Hyun-Gook;Seong, Poong-Hyun;Park, Heui-Youn;Lee, Cheol-Kwon;Koo, In-Soo
    • Nuclear Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.8-16
    • /
    • 1998
  • In this work a method to detect the vibrational peak and to decide the vibrational mode of detected peak for core internal vibration monitoring system which is particularly concerned on the core support barrel (CSB) and fuel assemblies is developed. Flow induced vibration and aging process in the reactor internals cause unsoundness of the internal structure. In order to monitor the vibrational status of core internal, signals from the ex-core neutron detectors are transformed into frequency domain. By analyzing transformed frequency domain signal, an analyst can acquire the information on the vibrational characteristics of the structures, i.e., vibration frequencies of each component, vibrational level, modes of vibration, and the causes of the abnormal vibration, if any. This study is focused on the development of the automated monitoring system. Several methods are surveyed to define the peaks in power spectrum and fuzzy theory is used to automatic detection of the vibrational peaks. Fuzzy algorithm is adopted to define the modes of vibration using the peak values from fuzzy peak recognition, phase spectrum, and coherence spectrum.

  • PDF

HBr Formation from the Reaction between Gas-phase Bromine Atom and Vibrationally Excited Chemisorbed Hydrogen Atoms on a Si(001)-(2 X1) Surface

  • Ree, J.;Yoon, S.H.;Park, K.G.;Kim, Y.H.
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권8호
    • /
    • pp.1217-1224
    • /
    • 2004
  • We have calculated the probability of HBr formation and energy disposal of the reaction exothermicity in HBr produced from the reaction of gas-phase bromine with highly covered chemisorbed hydrogen atoms on a Si (001)-(2 ${\times}$1) surface. The reaction probability is about 0.20 at gas temperature 1500 K and surface temperature 300 K. Raising the initial vibrational state of the adsorbate(H)-surface(Si) bond from the ground to v = 1, 2 and 3 states causes the vibrational, translational and rotational energies of the product HBr to increase equally. However, the vibrational and translational motions of product HBr share most of the reaction energy. Vibrational population of the HBr molecules produced from the ground state adsorbate-surface bond ($v_{HSi}$ =0) follows the Boltzmann distribution, but it deviates seriously from the Boltzmann distribution when the initial vibrational energy of the adsorbate-surface bond increases. When the vibration of the adsorbate-surface bond is in the ground state, the amount of energy dissipated into the surface is negative, while it becomes positive as vHSi increases. The energy distributions among the various modes weakly depends on surface temperature in the range of 0-600 K, regardless of the initial vibrational state of H(ad)-Si(s) bond.

회전형 레오미터와 진동형 점도계를 이용한 세라믹 슬러리의 점도 비교 (Comparison of the Viscosity of Ceramic Slurries using a Rotational Rheometer and a Vibrational Viscometer)

  • 지혜;임형미;장영욱;이희수
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.542-548
    • /
    • 2012
  • The viscosity of a ceramic slurry depends on the slurry concentration, particle shape and size, hydrodynamic interactions, temperature, shear rate, pre-treatment condition and the method of measurement with the selected equipment. Representative ceramic slurries with low to high viscosity levels are selected from colloidal silica, barium titanate slurry and glass frit paste. Rotational rheometers and vibrational viscometers are used to compare the measured viscosity for various ceramic slurries. The rotational rheometer measured the viscosity according to the change of the shear rate or the rotational speed. On the other hand, the vibrational viscometer measured one point of the viscosity in a fixed vibrational mode. The rotational rheometer allows the measurement of the viscosity of a ceramic paste with a viscosity higher than 100,000 cP, while the vibrational viscometer provides an easy and quick method to measure the viscosity without deformation of the ceramic slurry due to the measurement method. It is necessary to select suitable equipment with which to measure the viscosity depending on the purpose of the measurement.

Vibrational Relaxation of Cyanate or Thiocyanate Bound to Ferric Heme Proteins Studied by Femtosecond Infrared Spectroscopy

  • Park, Seongchul;Park, Jaeheung;Lin, Han-Wei;Lim, Manho
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.758-764
    • /
    • 2014
  • Femtosecond vibrational spectroscopy was used to measure the vibrational population relaxation time ($T_1$) of different anions bound to ferric myoglobin ($Mb^{III}$) and hemoglobin ($Hb_{III}$) in $D_2O$ at 293 K. The $T_1$ values of the anti-symmetric stretching (${\nu}_1$) mode of NCS in the $NCS^-$ bound to $Mb^{III}$ ($Mb^{III}$NCS) and $Hb_{III}$ ($Hb_{III}$NCS) in $D_2O$ are $7.2{\pm}0.2$ and $6.6{\pm}0.2$ ps, respectively, which are smaller than that of free NCS. in $D_2O$ (18.3 ps). The $T_1$ values of the ${\nu}_1$ mode of NCO in the $NCO^-$ bound to $Mb^{III}$ ($Mb^{III}$NCO) and $Hb_{III}$ ($Hb_{III}$NCO) in $D_2O$ are $2.4{\pm}0.2$ and $2.6{\pm}0.2$ ps, respectively, which are larger than that of free $NCO^-$ in $D_2O$ ($1.9{\pm}0.2$ ps). The smaller $T_1$ values of the ${\nu}_1$ mode of the heme-bound NCS suggest that intramolecular vibrational relaxation (VR) is the dominant relaxation pathway for the excess vibrational energy. On the other hand, the longer $T_1$ values of the ${\nu}_1$ mode of the heme-bound NCO suggest that intermolecular VR is the dominant relaxation pathway for the excess vibrational energy in the ${\nu}_1$ mode of $NCO^-$ in $D_2O$, and that intramolecular VR becomes more important in the vibrational energy dissipation of the ${\nu}_1$ mode of NCO in $Mb^{III}$NCO and $Hb_{III}$NCO.

알켄-오존 반응의 중간 생성물에 대한 ab initio 양자역학적 고찰 (Quantum Mechanical Investigation on the Intermediates of Alkene-Ozone Reaction)

  • 강창덕;김승준
    • 대한화학회지
    • /
    • 제42권2호
    • /
    • pp.161-171
    • /
    • 1998
  • 알켄-오존 반응에서 생성된 중간 생성물로써 primary ozonide (POZ),secondary ozonide (SOZ)그리고 carbonyl oxide의 분자구조, vibrational frequencies그리고 infrared(IR)스펙트럼의 세기 등에 대한 이론적 연구를 high level ab initio 양자역학적 방법(CISD,CCSD)을 사용하여 수행하였다. 일반적으로, polarization function은 결합각과 결합길이를 감소시키는 경향을 보였고 반면, electron correlation effect는 결합길이와 결합각을 약간 증가시키는 경향을 보이고 있다. Carbonyl oxide의 분자구조는 zwitterionic form이 diradical form보다 더 안정한 것으로 예측되었으며, 두 형태의 에너지는 차이는 TZ2P CISD level에서 약 22.4 kcal/mol인 것으로 계산되었다. 또한, POZ과 SOZ의 분자구조 및 harmonic vibrational frequencies들을 실험결과와 비교 분석하였으며 IR세기에 근거하여 각 vibrational mode를 assign 하였다.

  • PDF