• Title/Summary/Keyword: Vibration-controlled blasting method

Search Result 18, Processing Time 0.023 seconds

A Blasting Experience in a Shallow Tunnel Section Overlain by Residential Structures (터널 상부 근접시설물 통과구간의 발파시공사례)

  • Won, Yeon-Ho;Kang, Choo-Won;Kim, Joung-In
    • Explosives and Blasting
    • /
    • v.26 no.2
    • /
    • pp.99-107
    • /
    • 2008
  • This study, to reduce a ground vibration damage of the structures in an area adjacent to housing structures located closely above the tunnel section, is the ground vibration reduction instance of a tunnel blasting selectively applied the ground vibration-controlled blasting method (delay time applied blasting method, large center hole cut method, Line Drilling method, etc) with an originally planned blasting method connected, but with it's workability and economic efficiency is satisfactory, so, the results says the ground vibration-controlled blasting method on a similar condition is very effective, even if the applicability is depend on the blasting method and ground condition of the work area.

Review of the History of Vibration Controlled Blasting Method and its Future Applicability (진동제어발파공법의 변천과정과 적용 전망에 관한 연구)

  • Ahn, Myung-Seog;Shin, Chang-Yong
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.53-61
    • /
    • 2009
  • R.O.K's explosive manufacturing source was first black powder (B.P) introduced into Korea Dynasty from China. In 1890, black powder was first used for mining blasting in Masan. Nowadays, a vibration control blasting method using the emulsion explosive has been applid to explosive demolition of building structure, subway and road construction sites. In December, 2006, Korean Government and professional society (KSEE) established the blasting guidelines of Modern Vibration Controlled Blasting Method (MVCBM) which is an unprecedented in the world.

A Case of the Alternative Method to Improve the Ambient Vibration Blasting Method Applied NATM Tunnel Construction in Urban Areas (도심지 NATM 터널 굴착시 적용된 미진동발파 공법 개선사례)

  • Lee, Jong-Yoon;Hwang, Yeon-Soo;Choi, Hack-Yong;Bae, Hyo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.535-542
    • /
    • 2010
  • Various difficulties have been increased in the construction of public structure; like the road in the overcrowding urban area, because of civil complaint, cost and period of construction. In oder to overcome these social problems, the tunnel has been planned the road design. Despite the resolution, there are many technical problems when constructed near facilities. The design of new tunnel below the existing service reservoir is applied to the ambient vibration blasting using Plasma. The result of test blasting was exceeded the standard ("2kine"). So it was considered a countermeasure for the vibration reduction applied to change the controlled blasting method, reduce the charge, add the pre middle horizontal hole in the cut blasting site, and so on. The result was satisfied the standard. Accordingly, if the quality of blasting process can be managed well, the application of this alternative method is highly effective one. Also, based on cost analysis between two methods, the alternative method is very competitive.

  • PDF

A Comparison of Ground Vibration in Center Cut Blasting using Artificial Joints (인공절리를 이용한 심발 발파에서의 지반진동 비교)

  • Park, Hoon;Suk, Chul-Gi;Noh, You-Song
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.16-25
    • /
    • 2018
  • In order to reduce ground vibration during tunnel excavation, a free surface blasting method has been applied in which a partial free surface is formed on the excavation surface and controlled blasting is performed. In this study, the ground vibration reduction due to artificial joints was evaluated by forming artificial joints on center cut using diamond wire saw and comparing the ground vibration caused by center cut blasting. As a result of comparison, ground vibration was reduced by artificial joints center cut blasting more than normal center cut blasting, and the ground vibration reduction effect of horizontal artificial joints center cut blasting was evaluated more than that of vertical artificial joint center cut blasting.

A Study on the Prediction & Transformation of Blasting Vibration for Environmental Regulation Standard (발파진동의 예측기법과 환경규제 기준으로의 변환 연구)

  • 김남수;양형식
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.14-19
    • /
    • 2001
  • The estimation of proper prediction method and the transformation method of environmental regulation standard were carried out by measuring blasting vibration. Vibration velocity was more adequate than vibration level in the blasting design by scaled distance. Thus, design and construction mutt be controlled by vibration velocity, and it is required that the vibration velocity is transformed to vibration level to meet regulation standard. Three transformation methods were studied. First, transformation formula is derived from the shock vibration data only. The second method it the transformation by correlation equation of vibration velocity and vibration level measured at the same time. The last one is the transformation of vibration velocity by FFT. It seems to be difficult to estimate damages by these methods because that every method shows considerable error. But transformation formula of PPV component to vibration level was most practical.

  • PDF

Numerical Analysis on Controlled Tunnel Blasting by Heck Charge (다단 장약에 의한 터널 진동제어 발파의 수치해석)

  • 양형식;두준기;조상호;김원범
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.403-411
    • /
    • 2003
  • Controlled tunnel blasting by deck charge was suggested and simulated by PFC and FEM analyses. Analyzed results showed that suggested method is efficient in fragmentation and able to decrease in vibration level because of decreased amount of charge per delay and dispersion of deck charge. This phenomena was explained by failure mechanism and proved that it can be successfully applied to tunnel blasting.

A Study on the Vibration Propagation Characteristics of Controlled Blasting Methods and Explosives in Tunnelling (터널 제어발파 공법 및 화약류의 진동전달 특성에 관한 연구)

  • Jung, Hyuksang;Jung, Kyoungsik;Mun, Hongnyeon;Chun, Byungsik;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.2
    • /
    • pp.5-14
    • /
    • 2011
  • The most common problem encountered in domestic tunnel construction sites are solving public resentments caused by damage to adjacent structures and buildings. The most effective excavation method in rock tunnelling is the drilling and blasting, which is the main cause of vibration resulting in the public resentments. In this study, numerical analysis is conducted to compare the vibration reduction effect of line drilling and pre-splitting methods. Furthermore, the numerical simulations are verified and the results are quantified. Finally, various combinations of explosives used in controlled blasting are used and the vibration reduction effects are evaluated, thereby proving the applicability of the controlled blasting for reduction of vibration in tunnelling.

A Tunnel Blasting Method Favorable to the Environment, which Utilizes Pre-splitting & an Upper Center Cut. (선균열과 상부 심빼기를 이용한 환경 친화적 터널발파공법)

  • 김일중;김영석;기경철
    • Explosives and Blasting
    • /
    • v.20 no.2
    • /
    • pp.7-19
    • /
    • 2002
  • The cut is placed high up in the section, the 1st sloping holes below the cut, and divided all the holes located below the 1st sloping holes into a certain area with longitudinal section, to lower pollution made from tunnel blasting. With the sequential blasting machine, after I first blasted holes around the cut holes by a pre-splitting method, blasted the cut area and the 1st sloping holes. The 1st and 2nd sloping holes divided areas are initiated gradually to free face upwards made by the cut. Especially, I pre-splinted contour holes previous blast the before sloping holes from the contours. The ground vibration from the earth surface just over the advance face decreased about 42.0% compare with the down blasting method under the condition of equal charge weight per delay. I controlled the crack and over break of the mother rock by pre-splitting contour holes before blast the first sloping holes from the contours. The peak values of noise and air blast by blasting decreased about 10dB more than the down blasting method. the noise and air blast diminished gradually as a round. The throw distance of the fly rock was decreased about 55%.

Blast Excavation of Small Diameter Tunnel near Underground pipe lines (지하 관 시설물과 인접한 소규모 단면 터널의 발파굴착 사례)

  • Won, Yeon-Ho;Kim, Kang-Gyu
    • Explosives and Blasting
    • /
    • v.28 no.1
    • /
    • pp.40-54
    • /
    • 2010
  • The messer shield method applys mainly to a tunnel with small cross-section of a weathered soil or weathered rock district and is fulfilled mostly by man-power excavation. but in case that hard rock exposes on tunnel face, incredible is an application of the rock-splitting method using a hydraulic power or a blasting method. This study represents the case of a blasting method which can control to be practiced by the minimum charges of 125 g an initial vibration occurring at the cut instead of the rock-splitting method, even though water pipe and gas pipe are closely adjacent.

Numerical Study on Ground Vibration Reduction and Fragmentation in a Controlled Blasting Utilizing Directional U Shape Charge Holder (U형 장약홀더를 이용한 발파공법에서 지반진동 저감특성 및 파괴효율에 관한 수치해석적 연구)

  • Kim, Hyon-Soo;Baek, Beom-Hyun;Oh, Se-Wook;Han, Dong-Hun;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.34 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • It is necessary to minimize ground vibration and noise due to blasting work in urban environment. The blast induced ground vibration and noise are generally generated by a portion of detonation energy, where most of the energy is utilized for rock breakage and movement of rock mass. Recently a blast method utilizing U-shaped steel charge holder was suggested to reduce the ground vibration without decreasing destructive power toward the free surface. In this study, single hole blasting utilizing U-shaped steel charge holder were simulated and the stress waves caused by the detonation of explosives were monitored using AUTODYN software. In order to examine the fragmentation efficiency of the U-shaped steel charge holder, one free face blasting models which adapt the blast induced stress waves were simulated by dynamic fracture process analysis (DFPA) code. In addition, the general blasting models were also simulated to investigate the fragmentation effectiveness of the U-shaped steel charge holder in rock blasting.