• 제목/요약/키워드: Vibration shoes

검색결과 8건 처리시간 0.025초

무전력형 진동신발 보행이 체온과 말초 혈액순환에 미치는 영향 (Effects of Walking with Non-Electric Power Vibration Shoes on Body Temperature and Peripheral Circulation)

  • 이현주;이청근;태기식
    • 대한의용생체공학회:의공학회지
    • /
    • 제40권6호
    • /
    • pp.235-241
    • /
    • 2019
  • The purpose of this study was to investigate the effect of the body temperature peripheral circulation with vibration shoes in healthy 10 adults. The magnetic vibration device with non-electric power was mounted in the midsole of the vibration shoes. The experiment was divided into two groups: vibration shoes and no vibration shoes. Subjects were randomly selected and measured body surface temperature by digital infrared thermal imaging (DITI) and non-invasive capillaries change by nailfold microscope (NFM). After walking in a treadmill for 15 minutes at 4.0 km/h speed wearing normal shoes or vibration shoes, DITI and NFM were measured. The walking with vibration shoes showed the body surface temperature shift from the proximal to the distal. In addition, the diameter of the nailfold capillary in the vibration shoes group was thicker and clearer due to the increased blood flow than that of the no vibration shoes group. The vibration shoes are easy to apply to anyone who can walk because it can give vibration stimulation by walking without additional time, cost, and effort in daily life. Further studies are needed to explain the physiological effects of vibration frequency and intensity on the long-term perspective of target subjects resulting from vascular dysfunction.

유아용 실내화의 공동주택 바닥충격음 저감 효과에 대한 평가 연구 (Effect of floor impact sound reduction by children's indoor shoes)

  • 박현구;김항;구희모;최둘;정상옥
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.417-418
    • /
    • 2014
  • This study examined the effect of children's indoor shoes how much they can reduce floor impact sound in the apartment. Four types of specimen were produced and tested when children aged under nine years old jumped and found some of them can reduce maximum 9 dB compared with when the children jumped without shoes.

  • PDF

드럼 브레이크의 스퀼 소음에 관한 연구 (A Study on the Squeal Noise of Drum Brakes)

  • 이장무;김종현;유성우;안창기
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.111-116
    • /
    • 1998
  • The squeal of drum brakes was investigated numerically and experimentally. Modal testings were performed for shoes, drums, backing plates and their assemblies. In order to predict the squeal phenomena, stability analysis was performed based on a simplified self-excited vibration model. Based on modal testings, the dynamic properties of the brake elements and the parameters used in this analysis were determined. The geometries of shoes and drums were also considered. The result shows that the modification methods of the shoe and the drum design are feasible for noise reduction.

  • PDF

On the Improved Method for the Mode Shapes of a Curved Beam in a Drum Brake

  • Lim, Byoung-Duk
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권2E호
    • /
    • pp.63-75
    • /
    • 1996
  • The squeal vibration of a drum is the major source of brake noise. In this system the binary flutter model of squeal vibration was employed for the drum brake of a passenger car. The vibration analysis of a drum brake was performed by using normal modes, which are obtained by variational method. An improved method for the estimation of shoe modes is proposed and the results are compared with the exact solutions. Numerical results for the coupled system of drum and shoes good agreement with the results of experimental model analysis and those obtained by FE analysis.

  • PDF

적외선 센서와 압력센서를 이용한 시각장애인용 보행보조신발 (Walking Assistive Shoes for Visually Impaired Person Using Infrared Sensor and Pressure Sensor)

  • 양창민;정지용;김정자
    • 재활복지공학회논문지
    • /
    • 제11권2호
    • /
    • pp.147-156
    • /
    • 2017
  • 시각장애인의 보행보조도구인 흰 지팡이는 보행에 필요한 정보인 장애물의 유무를 직접 접촉해야만 인식할 수 있으며 지면의 낮은 장애물을 탐지하기 어렵다는 단점이 있다. 최근 이러한 문제들을 해결하기 위해 새로운 보행보조도구들이 개발되고 있지만 개발된 도구들의 외형과 높은 가격으로 인해 많이 사용되지 못하고 있다. 이에 본 논문에서는 적외선 센서와 압력 센서, 진동 모터를 사용하여 두 가지 유형의 보행보조신발을 제작하였다. 두 가지 유형의 보행보조신발은 장착된 적외선 센서의 개수에 따라 단일 센서 (SS)와 이중 센서 유형(DS)으로 분류하였다. 유효성 평가를 위해 장애물이 배치된 공간에서 보행 보조 신발과 흰 지팡이를 가지고 보행할 때 나타나는 보행 소요 시간과 충돌 횟수를 비교하였다. 실험 결과, 개발된 보행보조신발 사용 시 지팡이에 비해 소요시간이 증가하였으나 충돌 횟수는 감소하였다. 또한, 보행보조신발 사용 시 흰 지팡이에 비해 이동시간과 충돌횟수가 더욱 크게 감소하였다. 따라서 개발된 보행보조신발이 시각장애인의 안전한 보행 환경을 제공하고 새로운 형태의 보행보조도구에 적응하는 시간을 감소시키는데 큰 도움을 줄 수 있을 것으로 사료된다.

층간소음 방지를 위한 인솔 재질별 진동 및 소음 평가 (Analyzing the Effect of Insole Materials on Vibration and Noise Reduction between Floors)

  • 민승남;이희란
    • 한국의류학회지
    • /
    • 제47권1호
    • /
    • pp.110-122
    • /
    • 2023
  • The COVID-19 pandemic increased people's time at home and caused an 80% increase in noise disputes between floors. The purpose of this study is to propose suitable materials for making indoor shoes (insoles) to minimize noise between floors. Subjects without back pain and leg-related disease (e.g. arthritis, etc.) from three different age groups (childhood, adolescence, and adulthood) were recruited for the study. Five polymer insole materials were considered: Chloroprene Rubber (CR foam), Ethylene Propylene Diene Monomer (EPDM foam), Natural Latex foam, Ethylene Vinyl Acetate (EVA foam), and Polyurethane (PU foam). From these materials, 20 combinations were prepared and randomly tested for noise and vibration. The results revealed a significant difference in noise and vibration levels based on the type of material used and the age of the subject. Nevertheless, all materials under consideration successfully reduced noise and vibration; in particular, type A-C greatly decreased. The CR foam material was especially effective at noise and vibration reduction (p<.01). This study suggests that adding insoles into socks that children wear at home could reduce noise vibration and disputes between floors.

Comparison of the Immediate Effect of the Whole-body Vibration on Proprioceptive Precision of the Knee Joint Between Barefoot and Shoe-wearing Conditions in Healthy Participants

  • Lee, Yu-bin;Hwang, Ui-jae;Kwon, Oh-yun
    • 한국전문물리치료학회지
    • /
    • 제28권2호
    • /
    • pp.108-116
    • /
    • 2021
  • Background: Whole-body vibration (WBV) has been used to alleviate proprioceptive damage by musculoskeletal and neurological conditions. However, no study has determined whether wearing shoes while applying WBV can affect proprioception precision of the knee joint. Objects: This study aimed to determine the differences in the proprioceptive precision of the knee joint before and after WBV and to compare the proprioceptive precision of the knee joint between barefoot and shoe-wearing conditions. Methods: This study recruited 33 healthy participants. A passive-to-active angle reproduction test was used to measure the proprioception precision of the knee joint using an electrogoniometer, and the target angle was set to a knee flexion of 30°. Proprioception precision was calculated using the error angle (angular difference from 30°). Proprioceptive precision was measured in weight-bearing and non-weight-bearing positions before and after applying WBV for 20 minutes at 12 Hz in barefoot and shoe-wearing conditions. Mixed repeated analysis of variance was used to determine the differences in changes in the proprioceptive precision of the knee joint according to foot conditions. Results: There were significant improvements in the weight-bearing (p = 0.002) and non-weight-bearing (p < 0.001) proprioceptive precision of the knee joint after applying WBV. However, there was no significant difference in the change in proprioceptive precision of the knee joint after applying WBV between the barefoot and shoe-wearing conditions. Conclusion: WBV stimulation had an immediate effect on improving the proprioceptive precision of the knee joint. However, foot conditions (barefoot or shoe-wearing) during WBV application did not influence the proprioceptive precision of the knee joint.

F.R.P 재료 보강에 의한 신개념 중량충격음 저감대책 (Heavy-weight Impact Noise Reduction of Concrete Slab Reinforcement Using F.R.P)

  • 정정호;유승엽;이평직;전진용;조아형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.383-386
    • /
    • 2005
  • Low frequency heavy-weight impact noise is the most irritating noise in Korean high-rise reinforced concrete apartment buildings. This low frequency noise is generated by foot traffic due to the fact that Koreans do not wear shoes at home. The transmission of the noise is facilitated by a load bearing wall structural system without beams and columns which is used in these buildings. In order to control low frequency heavy-weight impact noise, floating floors using isolation materials such as glass-wool mat and poly-urethane mat are used. However, it was difficult to control low frequency heavy-weight impact sound using isolation material. In this study, reinforcement of concrete slab using beams and plate was conducted. Using the FEM analysis, the effect of concrete slab reinforcement using FRP(fiber-glass reinforced plastic) on the bang machine impact vibration acceleration level and sound were conducted at the standard floor impact sound test building. The $3{\sim}4dB$ floor impact vibration acceleration level and impact sound pressure level were reduced and the natural frequency of slabs were changed.

  • PDF