• Title/Summary/Keyword: Vibration shoes

Search Result 8, Processing Time 0.02 seconds

Effects of Walking with Non-Electric Power Vibration Shoes on Body Temperature and Peripheral Circulation (무전력형 진동신발 보행이 체온과 말초 혈액순환에 미치는 영향)

  • Lee, Hyun Ju;Lee, Cheong Gn;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.235-241
    • /
    • 2019
  • The purpose of this study was to investigate the effect of the body temperature peripheral circulation with vibration shoes in healthy 10 adults. The magnetic vibration device with non-electric power was mounted in the midsole of the vibration shoes. The experiment was divided into two groups: vibration shoes and no vibration shoes. Subjects were randomly selected and measured body surface temperature by digital infrared thermal imaging (DITI) and non-invasive capillaries change by nailfold microscope (NFM). After walking in a treadmill for 15 minutes at 4.0 km/h speed wearing normal shoes or vibration shoes, DITI and NFM were measured. The walking with vibration shoes showed the body surface temperature shift from the proximal to the distal. In addition, the diameter of the nailfold capillary in the vibration shoes group was thicker and clearer due to the increased blood flow than that of the no vibration shoes group. The vibration shoes are easy to apply to anyone who can walk because it can give vibration stimulation by walking without additional time, cost, and effort in daily life. Further studies are needed to explain the physiological effects of vibration frequency and intensity on the long-term perspective of target subjects resulting from vascular dysfunction.

Effect of floor impact sound reduction by children's indoor shoes (유아용 실내화의 공동주택 바닥충격음 저감 효과에 대한 평가 연구)

  • Park, Hyeon Ku;Kim, Hang;Goo, Hee-Mo;Choi, Dool;Jung, Sangok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.417-418
    • /
    • 2014
  • This study examined the effect of children's indoor shoes how much they can reduce floor impact sound in the apartment. Four types of specimen were produced and tested when children aged under nine years old jumped and found some of them can reduce maximum 9 dB compared with when the children jumped without shoes.

  • PDF

A Study on the Squeal Noise of Drum Brakes (드럼 브레이크의 스퀼 소음에 관한 연구)

  • 이장무;김종현;유성우;안창기
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.111-116
    • /
    • 1998
  • The squeal of drum brakes was investigated numerically and experimentally. Modal testings were performed for shoes, drums, backing plates and their assemblies. In order to predict the squeal phenomena, stability analysis was performed based on a simplified self-excited vibration model. Based on modal testings, the dynamic properties of the brake elements and the parameters used in this analysis were determined. The geometries of shoes and drums were also considered. The result shows that the modification methods of the shoe and the drum design are feasible for noise reduction.

  • PDF

On the Improved Method for the Mode Shapes of a Curved Beam in a Drum Brake

  • Lim, Byoung-Duk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2E
    • /
    • pp.63-75
    • /
    • 1996
  • The squeal vibration of a drum is the major source of brake noise. In this system the binary flutter model of squeal vibration was employed for the drum brake of a passenger car. The vibration analysis of a drum brake was performed by using normal modes, which are obtained by variational method. An improved method for the estimation of shoe modes is proposed and the results are compared with the exact solutions. Numerical results for the coupled system of drum and shoes good agreement with the results of experimental model analysis and those obtained by FE analysis.

  • PDF

Walking Assistive Shoes for Visually Impaired Person Using Infrared Sensor and Pressure Sensor (적외선 센서와 압력센서를 이용한 시각장애인용 보행보조신발)

  • Yang, Chang-Min;Jung, Ji-Yong;Kim, Jung-Ja
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.2
    • /
    • pp.147-156
    • /
    • 2017
  • The white cane, walking assistive device of visually impaired person, has disadvantages for acquiring the information by contacting obstacles directly and detecting low obstacle on the ground. Recently, new devices have been developing to solve these problems, but these were not widely used due to high price and appearance. Therefore, in this study, we developed two types of walking assistive shoes which were manufactured with infrared sensors, pressure sensors and vibrating motors. Two types of shoes were classified with single sensor (SS) and double sensor (DS) type according to the number of infrared sensor. To evaluate the effectiveness, we compared required time and number of collisions during walking with walking assistive shoes and white cane on obstacle area. As the results, required time was increased than white cane while number of collisions was decreased when walking with developed walking assistive shoes. In addition, required time and number of collisions was more reduced when using walking assistive device than white cane. Therefore, we suggests that developed walking assistive shoes can a great help to provide safe walking condition and reducing time to adapt new types of walking assistive shoes.

Analyzing the Effect of Insole Materials on Vibration and Noise Reduction between Floors (층간소음 방지를 위한 인솔 재질별 진동 및 소음 평가)

  • Seungnam Min;Heeran Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.1
    • /
    • pp.110-122
    • /
    • 2023
  • The COVID-19 pandemic increased people's time at home and caused an 80% increase in noise disputes between floors. The purpose of this study is to propose suitable materials for making indoor shoes (insoles) to minimize noise between floors. Subjects without back pain and leg-related disease (e.g. arthritis, etc.) from three different age groups (childhood, adolescence, and adulthood) were recruited for the study. Five polymer insole materials were considered: Chloroprene Rubber (CR foam), Ethylene Propylene Diene Monomer (EPDM foam), Natural Latex foam, Ethylene Vinyl Acetate (EVA foam), and Polyurethane (PU foam). From these materials, 20 combinations were prepared and randomly tested for noise and vibration. The results revealed a significant difference in noise and vibration levels based on the type of material used and the age of the subject. Nevertheless, all materials under consideration successfully reduced noise and vibration; in particular, type A-C greatly decreased. The CR foam material was especially effective at noise and vibration reduction (p<.01). This study suggests that adding insoles into socks that children wear at home could reduce noise vibration and disputes between floors.

Comparison of the Immediate Effect of the Whole-body Vibration on Proprioceptive Precision of the Knee Joint Between Barefoot and Shoe-wearing Conditions in Healthy Participants

  • Lee, Yu-bin;Hwang, Ui-jae;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.28 no.2
    • /
    • pp.108-116
    • /
    • 2021
  • Background: Whole-body vibration (WBV) has been used to alleviate proprioceptive damage by musculoskeletal and neurological conditions. However, no study has determined whether wearing shoes while applying WBV can affect proprioception precision of the knee joint. Objects: This study aimed to determine the differences in the proprioceptive precision of the knee joint before and after WBV and to compare the proprioceptive precision of the knee joint between barefoot and shoe-wearing conditions. Methods: This study recruited 33 healthy participants. A passive-to-active angle reproduction test was used to measure the proprioception precision of the knee joint using an electrogoniometer, and the target angle was set to a knee flexion of 30°. Proprioception precision was calculated using the error angle (angular difference from 30°). Proprioceptive precision was measured in weight-bearing and non-weight-bearing positions before and after applying WBV for 20 minutes at 12 Hz in barefoot and shoe-wearing conditions. Mixed repeated analysis of variance was used to determine the differences in changes in the proprioceptive precision of the knee joint according to foot conditions. Results: There were significant improvements in the weight-bearing (p = 0.002) and non-weight-bearing (p < 0.001) proprioceptive precision of the knee joint after applying WBV. However, there was no significant difference in the change in proprioceptive precision of the knee joint after applying WBV between the barefoot and shoe-wearing conditions. Conclusion: WBV stimulation had an immediate effect on improving the proprioceptive precision of the knee joint. However, foot conditions (barefoot or shoe-wearing) during WBV application did not influence the proprioceptive precision of the knee joint.

Heavy-weight Impact Noise Reduction of Concrete Slab Reinforcement Using F.R.P (F.R.P 재료 보강에 의한 신개념 중량충격음 저감대책)

  • Jeong, Jeong-Ho;Yoo, Seung-Yup;Lee, Pyoung-Jik;Jeon, Jin-Yong;Jo, A-Hyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.383-386
    • /
    • 2005
  • Low frequency heavy-weight impact noise is the most irritating noise in Korean high-rise reinforced concrete apartment buildings. This low frequency noise is generated by foot traffic due to the fact that Koreans do not wear shoes at home. The transmission of the noise is facilitated by a load bearing wall structural system without beams and columns which is used in these buildings. In order to control low frequency heavy-weight impact noise, floating floors using isolation materials such as glass-wool mat and poly-urethane mat are used. However, it was difficult to control low frequency heavy-weight impact sound using isolation material. In this study, reinforcement of concrete slab using beams and plate was conducted. Using the FEM analysis, the effect of concrete slab reinforcement using FRP(fiber-glass reinforced plastic) on the bang machine impact vibration acceleration level and sound were conducted at the standard floor impact sound test building. The $3{\sim}4dB$ floor impact vibration acceleration level and impact sound pressure level were reduced and the natural frequency of slabs were changed.

  • PDF