• Title/Summary/Keyword: Vibration reduction performance

Search Result 536, Processing Time 0.024 seconds

A Study on the Vibrational Reduction Evaluation and the Relative Displacement in the External Vibration of Precision Measuring System (초정밀 측정/가공 장비의 외부진동에 대한 상대변위의 추출과 진동성능 평가에 관한 연구)

  • 전종균;엄호성;김강부;원영재
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.65-72
    • /
    • 2002
  • Generally, there are laser operating equipments( aligner, stepper) and electronic microscope( SEM, TEM) as a high precision manufacturing and inspection equipment in semiconductor production companies, precision examination and measuring laboratories. Mostly, these equipments are characterized by projection and target part. The relative displacements between projection and target part are dominant roles in vibrational problem in these precision equipments. These relative displacements are determined by the position of incoming vibration and the difference of vibration response in projection and target part. In this study, the allowable vibrational limits are suggested and the vibrational reduction plans are proposed by measurement and analysis of vibration phenomenon in the Clean Room in PDP(plasma display panel) production building. The vibration performance is evaluated by comparison relative displacements between projection and target part before/after the vibration isolation plan.

Vibration reduction of forklift truck using optimization of engine mount layout (마운트 배치 최적화를 통한 지게차 엔진 진동 저감)

  • Kim, Younghyun;Kim, Kyutae;Lee, Wontae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.787-791
    • /
    • 2013
  • The engine excitation forces are considered as major vibration source for the forklift truck, especially in small class. Even though the current engine mounting system designs are acceptable for vibration isolation, the performance of the engine mounting system is still required for the tendency of light weight, higher power and driver's higher vibration requirement. In this paper vibration reduction technique of forklift engine which is supported on rubber mounts is presented. Based on the dynamic model of resilient engine mounting system, design evaluation program is established. The design optimization technique and evaluation method of system properties are discussed. Effects of optimal design are validated through comparison with test results.

  • PDF

Seismic vibration control for bridges with high-piers in Sichuan-Tibet Railway

  • Chen, Zhaowei;Han, Zhaoling;Fang, Hui;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.749-759
    • /
    • 2018
  • Aiming at widely used high-pier bridges in Sichuan-Tibet Railway, this paper presents an investigation to design and evaluate the seismic vibration reduction effects of several measures, including viscous damper (VD), friction pendulum bearing (FPB), and tuned mass damper (TMD). Primarily, according to the detailed introduction of the concerned bridge structure, dynamic models of high-pier bridges with different seismic vibration reduction (SVR) measures are established. Further, the designs for these SVR measures are performed, and the optimal parameters of these measures are investigated. On this basis, the vibration reduction effects of these measures are analyzed and assessed subject to actual earthquake excitations in Wenchuan Earthquake (M=8.0), and the most appropriate SVR measure for high-pier bridges in Sichuan-Tibet Railway is determined at the end of the work. Results show that the height of pier does not obviously affect the performances of the concerned SVR measures. Comprehensively considering the vibration absorption performance, installation and maintenance of all the employed measures in this paper, TMD is the best one to absorb vibrations induced by earthquakes.

Study on the Development of Integrated Vibration and Sound Generator (휴대폰용 일체형 음향 및 진동 발생장치 개발을 위한 연구)

  • 신태명;안진철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.875-881
    • /
    • 2003
  • The received signal of a mobile phone is normally sensed through two independent means which are the sound generation of a speaker and vibration generation of a vibration motor. As an improvement scheme to meet the consumer's demand on weight reduction and miniaturization of a mobile phone, the design and development of an integrated vibration and sound generating device are performed in this research. To this purpose, the optimal shapes of the voice coil. the permanent magnet and the vibration plate are designed, and the excitation force applied to the vibration system of the new device is estimated and verified through theoretical analyses, computer simulation, and experiments using an expanded model. In addition, vibration performance comparison of the device with the existing vibration motor is performed, and from the overall process, therefore, the method and procedure for the vibration performance analysis of the integrated vibration and sound generating device are established.

Vibration control performance of particle tuned mass inerter system

  • Zheng Lu;Deyu Yan;Chaojie Zhou;Ruifu Zhang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.383-397
    • /
    • 2024
  • To improve the vibration control performance and applicability of traditional particle tuned mass damper (PTMD) and realize the significant characteristic of lightweight design, this study proposes a novel particle tuned mass inerter system (PTMIS) by introducing inerter system (IS) to the PTMD. In the study, the motion equation of single degree of freedom (SDOF) structure attached with PTMIS is established first, then the variation law of the system's vibration reduction performance (VRP) is discussed through parameter analysis, and it is compared with the PTMD to analyze its VRP advantages. Finally, its vibration reduction (VR) mechanism from the perspective of core control force and energy analysis is explored, and its cavity relative displacement from the application perspective is analyzed. The results show that the PTMIS can remarkably improve the vibration control effectiveness of the PTMD. The reason is that the inerter can store energy and transfer the energy to the cavity and particles, which further stimulates the interaction between the two parts, thereby improving the nonlinear energy consumption effectiveness. Also, the IS can amplify the damping element's energy dissipation efficiency. In addition, the PTMIS can effectively reduce the working stroke of the PTMD, and through the analysis of the lightweight characteristics of the PTMIS, it is found that its lightweight advantage can reach nearly 100%.

A Study on the Acoustic Performance Design Technique of Underwater Acoustic Material (수중 음향재료의 음향성능 설계기법 연구)

  • Seo, Youngsoo;Ham, Ilbae;Jeon, Jaejin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.920-927
    • /
    • 2013
  • The requirement of acoustic performance about underwater acoustic material which is used in underwater environment more increases. Underwater acoustic material was made by viscoelastic material such as a rubber and a polyurethane etc. In order to increase an acoustic performance, several kinds of inclusions were added to viscoelastic material. In this paper, acoustic modelling and analysis techniques were introduced and the acoustic characteristics of underwater acoustic material were studied. Echo reduction and transmission loss were calculated with volume fraction of inclusion in the material. Also the characteristic impedance and the input impedance of underwater acoustic material were obtained and effects on the echo reduction and transmission loss of material were discussed.

A Case Study of Vibration Reduction of Helicopter Development Configuration Using Graphic Analysis and Desirability Function (그래프 분석과 호감도 함수를 이용한 헬리콥터 개발형상의 진동저감 사례)

  • Kim, Se Hee;Lee, Gun Myung;Shin, Byung Cheol;Byun, Jai Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.3
    • /
    • pp.341-358
    • /
    • 2015
  • Purpose: This paper presents graphic methods and desirability function approach to determine best vibration reducing configuration for Surion helicopter. Many flight tests were executed and nine vibration levels in cockpit, cabin, and engine room were measured in each test and analyzed to find optimal configuration. Methods: Graphic analysis methods such as matrix, scatter, and box plots are used to identify better vibration-reducing flight test conditions. As an integrated measure of the performance of 9 vibration levels desirability function approach is adopted. Results: Three vibration reducing configurations are found to be proper and one configuration is recommended. Conclusion: It is expected to be helpful to adopt graphic and desirability function methods presented in this paper in developing new products or systems like helicopters. For efficient and effective flight testing of helicopters, it will be necessary to have consistently homogeneous environment for flight testing and applying design of experiments techniques and analyzing test data.

Vibration suppression analysis of a long-span cable-stayed bridge based on earthquake-wind-traffic-bridge coupled system

  • Xinfeng Yin;Yong Liu;Wanli Yan;Yang Liu;Zhou Huang
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.379-387
    • /
    • 2023
  • Wind and earthquake loads may cause strong vibrations in large-span cable-stayed bridges, leading to the inability of the bridge to operate normally. An improved Pounding Tuned Mass Damper (PTMD) system was designed to improve the safety of the large-span cable-stayed bridge. The vibration control effect of the improved PTMD system on the large-span cablestayed bridge under the combined action of earthquake-wind-traffic was studied. Furthermore, the impact of different parameters on the vibration suppression performance of the improved PTMD system was analyzed. The numerical results indicate that the PTMD system is very effective in suppressing the displacements of the bridge caused by both the traffic-wind coupling and traffic-earthquake coupling. Moreover, the number, mass ratio, pounding stiffness, and gap values have a significant influence on the vibration suppression performance of the improved PTMD system. When the number of PTMD is increased from 3 to 9, the vibration reduction ratio of the vertical displacement is increased from 25.39% to 48.05%. As the mass ratio changes from 0.5% to 2%, the vibration reduction ratio increases significantly from 22.23% to 53.30%.

Evaluation of Floor Impact Sound Performance according to the Reduction Methods (바닥충격음 저감방안에 따른 성능평가)

  • 김경우;최경석;최현중;양관섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.131-136
    • /
    • 2004
  • Impact sounds, such as those created by footsteps, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. The character and level of impact noise generated depends on the object striking the floor, on the basic structure of the floor, and on the floor covering. This study base on the evaluate of isolation performance of impact sound according to the impact noise reduction methods. Reduction methods consist of four ways. First way is increase thickness of bare floor and other ways are using the soft coverings on the floor and ceiling assembles. Last way is make floating floor with shock absorbing materials.

  • PDF

Evaluation of Floor Impact Sound Performance according to the Reduction Methods (바닥충격음 저감방안에 따른 성능평가)

  • Choi Gyoung-Seok;Choi Hyun-jung;Yang Kwan-Seop;Kim Kyoung-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.811-818
    • /
    • 2004
  • Impact sounds, such as those created by footsteps, the dropping of an object or the moving of furniture, can be a source of great annoyance in residential buildings. The character and level of impact noise generated depends on the object striking the floor, on the basic structure of the floor, and on the floor covering. This study base on the evaluate of isolation performance of impact sound according to the impact noise reduction methods. Reduction methods consist of four ways. First way is increase thickness of bare floor and other ways are using the soft coverings on the floor and ceiling assembles. Last way is make floating floor with shock absorbing materials.