• Title/Summary/Keyword: Vibration of Continuous System

Search Result 208, Processing Time 0.041 seconds

Transitional Vibration Characteristics of Single Degree of Freedom System through the Resonance (공진을 통과하는 일자유도계의 과도진동 특성)

  • Chung, Tae-Jin;Hong, Dong-Pyo;Tae, Sin-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.41-46
    • /
    • 1993
  • The transitional characterisics of oscillations and rotational speeds from the starting to the stationary states in damped single degree of freedom systems acted upon the rotor unbalance forces are studied. Angular travel is assumed to vary with time. The theoretical analysis is obtained by using Laplace transform method. Integration involved in the theoretical results is carried out by the numerical analysis program of continuous-time linear systems to arbitrary inputs. It is evident that the transitional charcterixtics of a machine are affected remarkably by damping ratios, stationary angular velocity time and frequency ratios.

  • PDF

Internal Resonance and Stability Change for the Two Degree Nonlinear Coupled System (2 자유도 비선형 연성시스템에서 내부공진과 안정성 변화)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.853-861
    • /
    • 2007
  • To understand the concept of dynamic motion in two degree nonlinear coupled system, free vibration not including damping and excitation is investigated with the concept of nonlinear normal mode. Stability analysis of a coupled system is conducted, and the theoretical analysis performed for the bifurcation phenomenon in the system. Bifurcation point is estimated using harmonic balance method. When the bifurcation occurs, the saddle point is always found on Poincare's map. Nonlinear phenomenon result in amplitude modulation near the saddle point and the internal resonance in the system making continuous interchange of energy. If the bifurcation in the normal mode is local, the motion remains stable for a long time even when the total energy is increased in the system. On the other hand, if the bifurcation is global, the motion in the normal mode disappears into the chaos range as the range becomes gradually large.

  • PDF

A study on the Quantification of vibration mode by ESPI using A.O Modulator (ESPI에서 AO변조기를 사용한 진동모드 정량화에 관한 연구)

  • 박낙규;유원재;안중근;강영준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.207-210
    • /
    • 2001
  • Recently, the study on the vibration analysis of machinery is greatly important and ESPI is widely used because of its many attractive features. Firstly, ESPI can be used to measure the vibration mode shape and the phase in real-time. Secondly, the conventional measuring methode, such as accelerometers, take much time to measure the whole field of object, but ESPI needs shorter time than other methods. Because ESPI is a field-inspection method. Thirdly, ESPI is a non-contact measuring system. ESPI does not have influence on the specimen. Beyond these features, there are several advantages in ESPI system. In this paper, the Stroboscopic ESPI system is described for measurement of a vibration mode shape. The Stroboscopic ESPI system had been used to visualize the vibration mode shape, in which EO(Electro-Optic)modulator was used to chop CW(Continuous Wavefront)laser. But it was not easy to control EO modulator and quantified the vibration amplitude and the phase of circular metal plate. At first, we found resonant frequency of the specimen by using time-averaged ESPI method. Nextly, the amplitudes of specimen were quantified by using Stroboscopic ESPI and we compare the results which were obtained in several chopping ratio.

  • PDF

A Study on the Dynamic Effect Influencing to Urban Railway Structures by Vibration from Near-field Excavating Work (근접장 굴착진동이 도시철도 구조물에 미치는 동적영향 연구)

  • Woo-Jin, Han;Seung-Ju, Jang;Sang-Soo, Bae;Seung-Yup, Jang;Myung-Seok, Bang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.41-53
    • /
    • 2022
  • In the excavation work like blasting/excavator work bordering on the urban railway, the dynamic safety of railway structures like tunnel, open-cut box structure and elevated bridge was investigated by numerical analysis in this study. The practically presented criteria on influential zones at the blasting work in the construction industry was numerically checked in cases of the precise vibration-controlled blasting (type II) and the small scale vibration-controlled blasting (type III) and it was shown that the criteria on blasting work methods needed to be supplemented through continuous field tests and numerical analyses. The influence of excavation vibration by mechanical excavators was especially investigated in case of earth auger and breaker. The numerical analysis of tunnel shows that the criteria on vibration velocities from the regression analysis of field test values was conservative. The amplification phenomenon of excavating vibration velocity was shown passing through the backfilling soil between the earth auger and the open-cut box structure. It was shown that the added-vibration on the superstructure of elevated bridge was occurred at the bottom of pile like earthquake when the excavator vibration was arriving at the pile toe. The systematic and continuous research on the vibration effect from excavating works was needed for the safety of urban railway structures and nearby facilities.

Dynamic behavior of boring bar with continuous system analysis (연속계 해석에 의한 보오링 바의 동적 거동에 관한 연구)

  • Kim, Jeong-Suk;Kang, Myeong-Chang;Park, Soo-Kil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.38-46
    • /
    • 1994
  • The vibration amplitude of boring bar is generally large at the tool tip, because it has the high length-diameter(L/D) ratio. A new dynamic cutting force model is presented by considering the change of shear angle under dynamic cutting. The boring bar is modelled as a cantilever with dynamic force acting at the tool end point. Based on this realistic continuous system model, the equation of motion of borring bar is solved by numerical computations. A good agreement is found between the proposed model and the experimental results.

  • PDF

A Malfunction Pattern Distinction of an Automotive Electric part by Sound and Vibration Frequency Analysis (소음진동 주파수분석을 이용한 자동차 전동부품의 고장유형 분석)

  • Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.107-112
    • /
    • 2021
  • The usage of electric-powered components consisting of several electrical and mechanical parts is continuously increasing in automobiles. Therefore, continuous assessment of the reliability and quality of these electric-powered parts is crucial. In this study, a noise and vibration measurement system for testing and evaluating the different electric-powered parts of automobiles was designed. Further, an FFT analysis was performed on some electric-powered steering assembly test equipment. In the FFT analysis of the noise and vibration signals for each essential fault part, the vibration FFT analysis was significantly compared with the noise analysis. The results showed that the vibration FFT analysis was more effective in determining the reliability and quality of the electric-powered parts.

A Study on the Dynamic Characteristics of Axial Vibration Damper for Two Stroke Low Speed Diesel Engine (저속 2행정 디젤엔진의 종진동 댐퍼 동특성에 관한 연구)

  • 이돈출;김정렬;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.113-121
    • /
    • 1994
  • Since two oil shocks in 1970s, all of engine makers have persevered in their efforts to reduce specific fuel consumption and to increase engine power rate as much as possible in marine diesel engines. As a result, the maximum pressure in cylinders of these engines has been continuously increased. It causes direct axial vibration. The axial stiffness of crank shaft is low compared to old types of engine models by increasing the stroke/bore ratio and its major critical speed might occur within engine operation range. An axial damper, therefore, needs to be installed in order to reduce the axial vibration amplitude of the crankshaft. Usually the main critical speed of axial vibration for the propulsion shafting system with a 4-8 cylinder engine exists near the maximum continuous revolution(MCR). In this case, when the damping coefficient of the damper is increased within the allowance of the structural strength, its stiffness coefficient is also increased. Therefore, the main critical speed of axial vibration can be moved beyond the MCR. It has the same function as a conventional detuner. However, in the case of a 9-12 cylinder engine, the main critical speed of axial vibration for the propulsion shafting system exists below the MCR and thus the critical speed cannot be moved beyond the MCR by using an axial damper. In this case, the damping coefficient of an axial damper should be adjusted by considering the range of engine revolution, the location and vibration amplitude of the critical speed, the fore and aft vibration of the hull super structure. It needs to clarify the dynamic characteristics of the axial vibration damper to control the axial vibration appropriately. Therefore authors suggest the calculation method to analyse the dynamic characteristics of axial vibration damper. To confirm the calculation method proposed in this paper, it is applied to the propulsion shafting system of the actual ships and satisfactory results are obtained.

  • PDF

The Study of the Harmonic Currents Effects on the Transformer Vibration (고조파 전류가 변압기 진동에 미치는 영향에 관한 연구)

  • Kim, Su-Yeol;Kim, Yeon-Whan;Kim, Jang-Mok;Lim, Ik-Hun;Lee, Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.106-111
    • /
    • 2000
  • EP(Electrostatic Precipitator) has been used to keep the natural environment from fly-ash in the industrial fields and operated in intermittent PEC(Pulse Energized Control) mode to improve dust-collecting efficiency. Intermittent PEC mode induces low-frequency harmonic currents into power system, therefore EP transformer vibrates. This continuous transformer vibration developes transformer abnormal audio-noise and if it is too much or operates in the region of natural frequency, transformer will be damaged in the end. EP interruption caused by transformer damage results in power generation stopped, power quality down and economic loss. Therefore, this paper explains harmonic currents and transformer vibration-core vibration, winding vibration, and proposes the measures of suppressing the vibration with EP operated in intermittent PEC mode. And this results is proposed to be used for future EP transformer design or EP control method to operate EP-concerned equipment safely keeping from system faults caused by transformer vibration.

  • PDF

A Study on the Torsional Vibration of propulsion Shafting System with Controllable Pitch Propeller (가변익 프로펠러를 갖는 추진축계의 비틀림진동에 관한 연구)

  • 이돈출
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.626-634
    • /
    • 1998
  • Controllable pitch propeller(CPP) is usually adopted for easy and effective engine controls of a ship in a port. Unfortunately the torsional vibration may occur by a certain variation of engine torque and the major resonance peak may exist within the maximum continuous rating(MCR) In these cases an additional stress concentration on the oil passages such as longitudinal slots notches and circular holes of an oil distributor shaft(ODS) occurs by the torsional vibration of the CPP shaft. In this paper an analysis for the fatigue limit of an ODS system of the 5S70MC engine in a crude oil carrier is done by applying FEM and empirical formulas. Furthermore the additional stress on the ODS is investigated by analyzing the torsional vibration of the shaft system and a control method in which a tuning damper is adopted is introduced in the case of the additional stress exceeds the fatigue limit. The validity of analysis method is verified by comparing the results acquired by an actual measurement of the vibratory torque for the above ODS

  • PDF

A Study on the Fault Detection of Roller Bearings in the Auto-Transmission (자동변속기에서의 롤러 베어링 결함 검출에 관한 연구)

  • Park, Ki-Ho;Jung, Sang-Jin;Wee, Hyuk;Lee, Gook-Sun;Cho, Seong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.84-88
    • /
    • 2008
  • The roller bearings play an important role not only sustain radial or axial load of system, but carry out a rotatory movement as a various operating conditions. They happen that incipient faults which were caused by excessive load, manufacturing or assembling process's errors and many other reasons are created. The bearing faults make noise and vibration by a continuous collision of rotatory components, which can lower the quality and stability of auto-transmission. Therefore, it is important to detect the early fault as soon as possible. This paper presents a detecting method for the improvement in quality by developing the program which can be used to analyze and predict the vibrational characteristics caused by roller bearing faults. We completed development of the inspection system of vibration by appling the most efficient detecting methods and verified the system's reliability through experiments.

  • PDF