• Title/Summary/Keyword: Vibration isolation

Search Result 588, Processing Time 0.024 seconds

Evaluation for the Capability of the Sound Insulation and Experimental Analysis for the Improvement of the Sound Insertion Loss of the Air Conditioner-cabinet Considering the Thickness and Aperture of the Partition (파티션의 두께 및 틈새를 고려한 에어컨 캐비닛의 차음 성능 평가 및 음향 삽입 손실 향상에 대한 실험적 분석)

  • Han, Hyung-Suk;Jung, Woo-Seoung;Mo, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.263-271
    • /
    • 2008
  • Compressor radiated noise is one of the dominant noise for the outdoor unit of the air conditioner. Therefore, air conditioner makers are trying to reduce it continuously. Even though noise absorption and isolation technology are one of the important parts for reducing the noise from the compressor, it is usually treated to the substitute technology when the noise from the compressor is very difficult to reduce by the compressor noise control only. In this paper, we focus on the property of the sound insulation for the cabinet and measure it applying the theory of the sound transmission loss and insertion loss of the simple enclosure. The insertion loss is evaluated by the experiments according to the thickness and the aperture of the partition in the cabinet.

The Effect of Aerated Concrete containing Foam Glass Aggregate on the Floor Impact Sound Insulation (발포유리 혼합기포 콘크리트의 바닥충격음 차단성능 영향에 관한 연구)

  • Yun, Chang-Yeon;Jeong, Jeong-Ho;Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.414-422
    • /
    • 2013
  • As structure-borne sound, the floor impact sound is one of the serious noises in residential building. Most of heating system applied to the typical Korean residential building is floor heating system which is called ondol. The ondol usually consists of finishing material, mortar with heating coil, light-weight aerated concrete and reinforced concrete. This study focused on the isolation of heavy-weight impact sound and modification of mortar and light-weight aerated concrete. Specifically the glass foam aggregate was added on light-weight aerated concrete. Also, water-cement ratio and amount of cement on mortar were revised. The sound pressure level of heavy-weight impact was measured in reverberation chamber using both bang-machine and impact ball. The size of specimen was 1 m by 1 m. Substitution ratio of glass foam aggregate on light-weight aerated concrete shows relationship with heavy-weight impact sound pressure level. In addition, heavy-weight impact sound pressure level was decreased with increment of water-cement ratio and amount of cement on mortar.

Investigation of Dynamic Absorbing System in the Gas-operated Gun with High Transmitted Shock Force (고충격 발생기구의 완충시스템 해석)

  • Kim, Hyo-Jun;Park, Young-Pil;Yang, Hyun-Seok;Choe, Eui-Jung;Lee, Sung-Bae;Hong, Kye-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.389-396
    • /
    • 2002
  • In this study, the dynamic absorbing system for gas operated gun has been investigated. For this purpose, firstly. mathematical model of gas-operated shoulder-fired gun has been constructed. Through a series of experimental works using the devised test setup, the characteristic behavior of mathematical model was compared to the test results. In order to design the dynamic absorbing system, parameter optimization process has been performed based on the simplified isolation system under constraints of moving displacement and transmitted force. In order to implement the more efficient dynamic absorbing system, the characteristic performance of stroke-dependent variable damping system has been analyzed with some opening area curves. Finally, the performance of the designed dynamic absorbing system has been evaluated by simulation and experiment using the previous test apparatus.

Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System (차량용 MR 충격댐퍼의 동특성 해석)

  • Song, Hyun-Jeong;Woo, David;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.147-152
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed for reduce transmitted force to vehicle chassis and finally protect occupants from injury. In the case of frontal collision, the bumper make main role of isolation material for collision attenuation. In this study, proposed bumper system composed of MR impact damper and structures. The MR impact damper is to adopted MR fluid which has reversible properties with applied magnetic field. MR fluid operates under flow mode with Bingham flow and bellows is used for generation of fluid flow. Mathematical model of MR impact damper incorporated with MR fluid is established. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

  • PDF

Optimization of Multilayered Foam-panel Sequence for Sound Transmission Loss Maximization (전달손실 최대화를 위한 다층 흡음재-패널 배열 최적설계)

  • Kim, Yong-Jin;Lee, Joong-Seok;Kang, Yeon-June;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1262-1269
    • /
    • 2008
  • Though multilayered foam-panel structures have been widely used to reduce sound transmission in various fields, most of the previous works to design them were conducted by repeated analyses or experiments based on initially given configurations or sequences. Therefore, it was difficult to obtain an optimal sequence of multilayered foam-panel structure yielding superior sound isolation capability. In this work, we propose a new design method to sequence a multi-panel structure lined with a poroelastic material having maximized sound transmission loss. Being formulated as a one-dimensional topology optimization problem fur a given target frequency, the optimal sequencing of panel-poroelastic layers is systematically carried out in an iterative manner. In this method, a panel layer is expressed as a limiting case of a poroelastic layer to facilitate the optimization process. This means that main material properties of a poroelastic material are treated as interpolated functions of design variable. The designed sequences of panel-poroelastic multilayer were shown to be significantly affected by the target frequencies; more panels were obtained at higher target frequency. The sound transmission loss of the system was calculated by the transfer matrix derived from Biot's theory.

Improving Wave Propagation Performance of an Ultrasonic Waveguide for Heat Isolation (열 차단용 초음파 도파관의 전파성능 향상 연구)

  • 최인석;전한용;김인수;김진오
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.545-553
    • /
    • 2003
  • This paper is concerned with protecting piezoelectric transducers used in an ultrasonic flowmeter from the high temperature of hot fluid in a pipe by using a waveguide and with improving the propagation of ultrasonic longitudinal vibration in the waveguide. Waveguide material has been chosen for efficient insulation of heat transferred in the waveguide, and the minimum length of the waveguide for protecting piezoelectric transducer has been estimated. Forced response of the longitudinal vibration in a uniform circular rod has been obtained and the length of the waveguide has been selected for maximum amplitude. Longitudinal vibration response of a conically-tapered rod excited at a natural frequency has been obtained to confirm that wave motion is amplified as the cross-sectional size of the waveguide decreases along the axial direction. The fact that dispersion of a pulse wave in a waveguide is reduced as the cross-sectional radius is decreased has been examined theoretically and confirmed experimentally by using a single-rod waveguide. A bundle-type waveguide has proven to be a practical one through the evaluation of the wave propagation performance.

An Experimental Study of Heat Transfer Analysis in Molding the Rubber Bearing for Seismic Isolator (고무 면진 베어링 몰딩과정의 열전달 해석 및 실험)

  • Kang, Gyung-Ju;Moon, Byung-Young;Kang, Beom-Soo;Kim, Kye-Soo;Jung, Kung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.275-280
    • /
    • 2001
  • Seismic isolator system is one of the most widely used base isolation system in order to control the vibration of structure against earthquake excitation. The evaluation of vulcanization time in molding the rubber bearing is very important for both proper ability of isolator and efficiency of manufacture. This paper deals with experimental measurement of temperature of isolator with senor inside in it, and compared with the result of FEA in order to evaluate the vulcanization time. Properties of rubber bearing which is used in the FEA are obtained by controlling the specific heat of rubber. With the obtained properties of rubber, the isolator is analysed by FEA. As a result, an appropriate analytical vulcanization time is obtained. This time is regarded as an appropriate temperature, which is used to effective manufacture.

  • PDF

Dynamic Deformation Behavior of Rubber Under High Strain-Rate Compressive Loading by Using Plastic SHPB Technique (플라스틱 SHPB기법을 사용한 고무의 고변형률 하중 하에서의 동적변형 거동)

  • 이억섭;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.158-165
    • /
    • 2003
  • A specific experimental method, the Split Hopkinson pressure bar (SHPB) technique has been widely used to determine the dynamic material properties under the impact compressive loading conditions with strain rate of the order of 10$^3$/s∼l0$^4$/s. In this paper, dynamic deformation behaviors of rubber materials widely used for the isolation of vibration from structure under varying dynamic loading are determined by using plastic SHPB technique. A transition point to scope with the dynamic deformation behavior of rubber-like material is defined in this paper and used to characterize the specifics of the dynamic deformation of rubber materials.

PREVIEW CONTROL OF ACTIVE SUSPENSION WITH INTEGRAL ACTION

  • Youn, I.;Hac, A.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.547-554
    • /
    • 2006
  • This paper is concerned with an optimal control suspension system using the preview information of road input based on a quarter car model. The main purpose of the control is to combine good vibration isolation characteristics with improved attitude control. The optimal control law is derived with the use of calculus of variation, consisting of three parts. The first part is a full state feedback term that includes integral control acting on the suspension deflection to ensure zero steady-state deflection in response to static body forces and ramp road inputs. The second part is a feed-forward term which compensates for the body forces when they can be detected, and the third part depends on previewed road input. The performance of the suspension is evaluated in terms of frequency domain characteristics and time responses to ramp road input and cornering forces. The effects of each part of the suspension controller on the system behavior are examined.

Development of Active Vibration Isolation System for Display Equipments

  • Im, Gyeong-Hwa;Yang, Son;An, Chae-Heon;Jin, Gyeong-Bok
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.132-138
    • /
    • 2007
  • 최근 반도체 및 디스플레이 산업 등에서 초정밀 가공, 측정 등이 필요함에 따라, 외란과 내부 진동을 차단하는 방진 시스템에 대한 연구가 활성화 되고 있다. 기존에 소개된 여러 방진 시스템 중에서 가장 많이 연구되는 공기스프링은 압축 공기를 이용하여 큰 하중을 지지할 수 있으면서 상대적으로 낮은 강성으로 낮은 고유진동수를 유지할 수 있다. 본 연구는 기존의 레벨링밸브를 이용한 수동 방진 시스템을 분석하여 이를 개선하고 디스플레이장비용 능동 방진 시스템을 설계하였다. 공기의 비선형 특성에 기인하는 복잡한 비선형 시스템 제어에 PID 제어기 보다 유리한 퍼지 제어기를 설계하였고, 실험과 해석을 비교하였다.

  • PDF