• Title/Summary/Keyword: Vibration intensity

Search Result 474, Processing Time 0.028 seconds

Study on the Vibration Intensity in a Beam (보에 있어서 진동인텐시티에 관한 연구)

  • Kim, Young-Wan;Park, Byeong-Jeon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.36-42
    • /
    • 1997
  • This paper purposes the measurement method of vibration intensity in building structure which is a method of measuring the intensity and the flow of vibration energy. We derived basic theory and measuring theory for a simple beam, and comparison of the experimental results with calculated results. As a result, according to the calculated value from acceleration distribution and the measurement result from the method of vibration intensity under the condition except near field of measurement zone. The measured results, show that this method is useful for measuring the vibration energy flow in building structure.

  • PDF

A method to generate virtual intensity at arbitrary position: Methodology and its physical meanings (임의의 위치에 가상 인텐시티 형성 방법: 방법론과 그 물리적 의미)

  • 최정우;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.652-657
    • /
    • 2003
  • This paper proposes a method to generate virtual intensity field in space. The sound field of a zone enclosing the listener position is controlled to have maximum acoustic intensity to the desired direction. In order to control acoustic intensity of a zone, space-averaged active intensity is introduced. The ratio of space-averaged active intensity and control effort is defined as a cost function and expressed as a function of source control signals. It is shown that the cost function represents radiation efficiency of multiple sources. The control signals maximizing the cost function is found through eigenvalue analysis. The proposed method is verified by numerical simulations performed in free field condition, and the results provide a relation between wavelength and the size of controllable intensity field.

  • PDF

Damping Patch Placement on Outdoor Unit of Air-conditioner by Using Structural Intensity Technique (구조 인텐서티법을 이용한 에어컨 실외기의 제진재 적용)

  • 김규식;진심원;정인화;이정우;강연준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.577-585
    • /
    • 2004
  • In this paper, reactive shearing structural intensity method is extended to damping patches placement on outer panels of outdoor unit of air-conditioner to reduce its structural borne noise. The structural intensity is calculated from the normal velocities of structures that are measured by using a laser scanning vibrometer, and $textsc{k}$-space (wave-number domain) signal processing is used to obtain the spatial derivatives in formulation of structural intensity. This method is applied to the outdoor unit of air-conditioner on shaker-exciting mode and operating mode. and then damping patches are placed over area of high reactive shearing structural intensity for reducing the radiated noise. Experimental results show the largest reduction of sound pressure level of an outdoor unit by appling small damping patches to optimal position.

Power Flow Analysis of Vibration of Coupled Plates Excited by a Point Force In an Arbitrary Direction (임의 방향 점가진력에 의한 연성 평판 진동의 파워흐름해석)

  • Kil, H.G.;Choi, J.S.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.301-308
    • /
    • 2000
  • The power flow analysis(PFA) has been performed to analyze the vibration of coupled plates excited by a point force in an arbitrry direction. The energy governing equations for longitudinal, shear and flexural waves were solved to predict the vibrational energy density and intensity. The wave transmission approach was used to consider the mode conversion at the joints of the coupled plates. Numerical results for energy density and intensity on the coupled plates were presented. Comparison of the results by PFA with exact results showed that PFA can be an effective tool to predict the spatial variation of the vibrational energy and intensity on the coupled plates at high frequencies.

  • PDF

A KS Draft of the Measurement of Sound Insulation in Buildings and of Building Elements Using Sound Intensity: Laboratory Conditions (Sound Intensity를 이용한 건물부재의 차음성능 실험실 측정방법 KS 규격 제정안)

  • Jung, Sung-Soo;Kook, Chan;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.961-964
    • /
    • 2002
  • A KS draft of the measurement of sound insulation in buildings and of building elements using sound intensity: laboratory conditions is proposed. It is based on ISO 15186-1. In order to make it as a KS, some contents are carefully tested.

  • PDF

Improved Transmission Path Visualization of Vibration Power Flow for Stiffened Plate Using Streamlines Representation (유선 표현법을 이용한 보강판의 진동파워흐름에 대한 개선된 전달경로 가시화)

  • Fawazi, Noor;Jeong, Un-Chang;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.692-700
    • /
    • 2012
  • Vibration intensity has been used to localize vibration source of a vibrating system. Not only that, vibration intensity has also been used for structural diagnostic in identifying crack and mounted stiffeners. To clearly identify the location of vibration source and understand the changes of energy transmission path, clear flow visualization is required. Most of previous works used vectors to indicate the magnitude and direction of emerging vibration energy and transmission paths. However, due to the large surface area of a plate like-structure, clear transmission paths cannot be achieved using vector visualization. This becomes an issue when detail vector flow at all locations of the whole plate surface is required. In this study, streamlines visualization is used to clearly indicate the power flow transmission path at all plate surface. By using streamlines representation, not only clear transmission paths are obtained, but also improves the vector visualization which helps us to understand the changes of the energy flow especially for stiffened plates. In this study, vibration intensity computation is firstly compared to previous work to validate the vibration intensity computation. To clearly show the power flow transmission paths, streamlines representation is shown. This representation overcomes the unclear vector direction especially for stiffened plates. Different pattern of energy transmission path can be observed using streamlines representation for stiffened and unstiffened plate. The complex streamlines pattern can also be observed at high resonance frequencies which is unclear by using vector representation.

Acoustic Radiation Characteristics from Flexible Steel Plate Excited by Acoustic Loading in an Rectangular enclosure (음향 가진된 밀폐계의 유연한 평판의 음향 방사 특성에 관한 연구)

  • 김상헌;안지훈;오재응
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.457-466
    • /
    • 1997
  • The experimental and analytical study was conducted to determine the noise transmission characteristics of acoustically loaded steel plate of rectangular enclosure and to investigate the sound radiation characteristics through out the enclosure. The vibrations of acoustically loaded plate give rise to sound radiations and generate the reverberant space that the sound field exists very close to a vibrating plate. Acoustic transmission loss is measured from the incident intensity into the plate and the transmitted intensity through out the plate. Sound radiation patterns are measured from both acoustic intensity technique and surface intensity technique. Those resultant patterns and vibrational modes are vital in understanding the relations between vibration and noise in the near field out of vibrating plate.

  • PDF

Active Control of Vibrational Intensity at a Reference Point in an Infinite, Elastic Plate (무한 탄성 평판상의 기준점에 전달되는 진동인텐시티의 능동제어)

  • 김기만
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.22-30
    • /
    • 2001
  • In this paper, active control of vibrational intensity at a reference point in an infinite, elastic plate was discussed. The plate is excised harmonically by a vibrating source, which has a vertical point force. The optimal condition of controller was investigated to minimize the vibrational intensity being transmitted from the vibrating source to a reference point. Hence the method of feedforward control was employed for the control strategy and then the cost function was evaluated to find the optimal control force. Three types of control force (Vertical force, Moment, and Coupling force (a set of vertical force and moment) ) and controller's positions were examined to define the optimal condition of the controller. The vibrational intensity at a reference point was found to be reduced down to a zero level, compared with the uncontrolled case. Especially maximum reduction of vibrational intensity was achieved when the controller was collinearly positioned between a vibrating source and a reference point.

  • PDF

Placing Constrained Layer Damping Patches Using Reactive Shearing Structural Intensity in Order to Reduce the Radiated Sound Power of a Air-Conditioner Outdoor Unit (반동 전단 구조 인텐서티 측정에 의한 제진재 적용과 그에 따른 에어컨 실외기 구조 방사 소음 저감)

  • 김규식;강연준;진심원;정인화;이정우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.333-337
    • /
    • 2003
  • The use of reactive shearing structural intensity to place small patches of constrained layer damping material in order to achieve the largest reduction in the radiated sound power of Air-conditioner outdoor unit is described. The normal surface velocity of each panel was measured using a laser doppler vibrometer. Experimental results indicated that patches of constrained layer damping material placed over areas of high reactive structural intensity reduced the radiated sound power significantly more than patches of the same area placed over areas of low reactive structural intensity

  • PDF

Noise, vibration Characteristic Identification and Noise Control of Indoor Air-Conditioner's Cabinet using Operational Deflection Shape (운행 중 변형형상을 이용한 에어컨 실내기 캐비닛의 소음/진동 특성 파악 및 제어)

  • Lee, Seong-Jin;Oh, Jae-Eung;Lee, Jung-Youn;Kang, Tae-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.830-833
    • /
    • 2004
  • An indoor package air-conditioner (PAC) has complex noise sources such as motor noise and fluid noise caused by the fan motor, heat transfer and shroud. Sound intensity techniques and ODS(Operational deflection shape) techniques are applied to identify the noise characteristics of an indoor air-conditioner's cabinet. The sound intensity is used to visualize the noise source locations. and the ODS to visualize the vibration pattern and to obtain the dynamic characteristics of the noise source. Acoustic intensity and operational deflection distribution are obtained in space domains as well as frequency domains. Using the visual information of source locations and its dynamic characteristics, the damping patch is applied to reduce structure borne noise in the cabinet. As a result, the noise emitted by the cabinet is reduced by 5dB.

  • PDF