• 제목/요약/키워드: Vibration durability

검색결과 285건 처리시간 0.031초

함정 디젤엔진 진동규격 연구 (Research of Vibration Criteria of Diesel Engines in Naval Craft)

  • 이경현;한형석;박미유;조흥기
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.797-802
    • /
    • 2011
  • Vibration of diesel engines in naval vessels causes structure vibration which is significant under water radiating noise source under CIS (Cavitation Inception Speed). So managing the vibration level of diesel engine is important for survivability and also durability of naval vessels. Therefore, in this research, a vibration criterion which is applied for Korean naval vessels are reviewed. It is compared with the DNV, ABS and merchant ship's diesel engine criteria. And also vibration data of three Korean naval vessels are analyzed. As a result, reasonable criteria of diesel engine vibration and shipbuilding standards are suggested.

  • PDF

철도차량용 냉방기 배관진동 저감 연구 (A Study on the Vibration Reduction of Pipe Line in the Air Conditioner for Railway Vehicles)

  • 정용호;구정서;유원희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.574-579
    • /
    • 2011
  • In this study, we suggested a design modification method to reduce the vibration of an air conditioner for railway vehicles and increase the durability of its pipe lines. Through experimental vibrational mode analyses and structural modifications on the air conditioning system, vibration reduction scheme was suggested and evaluated its effectiveness by empirical modal analysis. The derived design idea was applied to a real air conditioning system and the expected improvement was obtained.

  • PDF

내구성 향상을 통한 고 신뢰성 Strut Mount 개발 (Development of a Strut Mount with High Reliability by Improving Durability)

  • 정찬홍
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제11권1호
    • /
    • pp.31-41
    • /
    • 2011
  • A strut mount is an important part of vehicles which reduces the vibration and the impact transmitted from the wheels while supporting a shock absorber and a coil spring. Rubber compounding, shape design, and process design technologies are important components to improve the functionality of a strut mount such as durability, static, dynamic, and torsional characteristics. Among them the rubber compounding technology is the key technology which dominates the quality of a strut mount. In this study a strut mount with high reliability has been developed by adopting new rubber compounding and improving the shape of the inner plate and the isolator. Through the tests for prototypes it has been shown that the durability has been improved more than 2.5 times, from about 60,000 cycles to about 160,000 cycles.

유니버셜 조인트의 형상 변화에 따른 내구성 해석 (Durability Analysis due to the Shape Change of Universal Joint)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제12권4호
    • /
    • pp.69-74
    • /
    • 2013
  • According to the axial torsion applied at power transmission and the vibration from the roughness of road surface, this paper analyzes the stresses on two kinds of universal joint model. As stress and deformation at model 2 becomes smaller than model 1 on structural analysis, model 2 is more stabilized than model 1. The natural frequencies at model 1 and 2 are 7,040 and 9,540 Hz respectively. As the natural frequency range of model 2 becomes higher than model 1, model 2 becomes safer than model 1. Critical frequencies at these models are calculated through harmonic response analyses. On critical frequencies at model 1 and 2, the stress at model 2 becomes lower than 2 times as much as model 1 and the deformation at model 2 becomes lower than 4 times as much as model 1. Model 2 on durability is thought to become better than model 1. This study result is applied with the design of safe universal joint and it can be useful to improve the durability by predicting prevention against the deformation due to its vibration.

자전거 프레임의 형상과 방향에 따른 구조적 내구성 해석 (Structural Durability Analysis Related to Shape and Direction of Bicycle Frames)

  • 조재웅;한문식
    • 한국생산제조학회지
    • /
    • 제22권6호
    • /
    • pp.969-975
    • /
    • 2013
  • While accelerating, bicycle frames are subject to torsion forces and deformation. In this study, bicycle frame durability was evaluated by using structural, fatigue, and vibration experiments. Three types of models were designed by changing the frame configurations according to the shape and direction of a bicycle frame design. Because maximum equivalent stress was greatest at the saddle and at connected parts in Models 1, 2, and 3, these frame sections were most vulnerable to failure. Model 2 was the least safe, due to the increased total deformation and equivalent stresses in the top tube horizontal to the ground. Based on vibration and fatigue analysis results, Model 2 was also determined to be the least safe frame, because the head tube was placed slightly higher above the seat tube and inclined to $10^{\circ}$. These study results can be utilized in the design of bicycle frames by investigating prevention and durability against damage.

동흡진기에 의한 저속 2행정 디젤엔진의 본체진동 제어 (Vibration Control of Engine Body for Two Stroke Low Speed Diesel Engine using Dynamic Vibration Absorber)

  • 이돈출;유정대;김정렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권6호
    • /
    • pp.631-637
    • /
    • 2002
  • Two stroke low speed diesel engines are used as a power supplier not only for marine vessel but also diesel power plant with a benefit of its higher mobility and durability than the other thermal engines. However, there are some disadvantages such as the bigger vibrating excitation forces generated by high combustion pressure in cylinders which various kinds of vibrations are caused. In this paper, it is theoretically studied to control engine body vibration using dynamic vibration absorber. As an actual case, dynamic absorbers are designed for controlling X-mode vibration of 9K80MC-S engine on the diesel power plant and its performance is identified by the vibration test both in shop and site

조향휠의 유형에 따른 구조안정성평가 (Evaluation on Structural Stability According to Steering Wheel Type)

  • 한문식;조재웅
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.733-740
    • /
    • 2012
  • This paper studies with structural and vibration analysis to evaluate the structural safety according to the types of steering wheels. This study models are two, three and four spoke types. As the number of spokes increases, the maximum equivalent stress becomes smaller but the maximum total deformation becomes a little higher. The natural frequency at three models are shown from 180 to 230Hz as the maximum deformation. The frequency responses as maximum amplitude displacement are happened at 200Hz, 500Hz and 500Hz respectively. In this study, the steering wheel with three spoke type is shown to become suitable at durability and production.

차체 구조물의 피로수명 예측을 위한 컴퓨터 시뮬레이션 방법에 관한 연구 (A Study on Computational Method for Fatigue Life Prediction of Vehicle Structures)

  • 이상범;박태원;박종성;이선병;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1883-1888
    • /
    • 2000
  • In this paper a computer aided analysis method is proposed for durability assessment in the early design stages using dynamic analysis, stress analysis and fatigue life prediction method. From dynamic analysis of a vehicle suspension system, dynamic load time histories of a suspension component are calculated. From the dynamic load time histories and the stress of the suspension component, a dynamic stress time history at the critical location is produced using the superposition principle. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The predicted fatigue life cycle is verified by experimental durability tests.

  • PDF

압축기의 Bearing 윤활을 고려한 탄성체 Shaft의 동적 거동 해석 (Dynamic analysis of an elastic shaft with consideration about Journal bearing)

  • 이윤곤;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.768-770
    • /
    • 2014
  • A shaft of a reciprocating compressor receives bending force by piston, which makes movement of the shaft. The movement of the shaft affects durability and becomes a source of noise. In this paper, a cylinder is modeled by considering motion of a suction and discharge valve. The journal bearing is modeled by Bernoulli's equation. The trajectory of shaft which is considered cylinder and journal bearing can be calculated by finite element method. It will help a design of shaft to increase durability and reduce noise.

  • PDF

풍력터빈 드라이브트레인의 동특성 해석을 위한 모델링 기법 (Modeling Techniques for The Dynamic Characteristics Analysis of Drivetrain in Wind Turbine)

  • 임동수;이승규;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.583-586
    • /
    • 2012
  • Wind turbine industry is booming and spending a lot on research for improving the performance of its present machines and increasing their capacity. Wind turbine requires service life of about 20 years and each canponents of wind turbine requires high durability, because installation and maintenance costs are more expensive than generated electricity by wind-turbine. So the design of wind turbine must be verified in various condition before production step. For this work, high reliability model for analysis is required. Drivetrain model is modeled by multibody dynamic modeling method. The model constituted with rotor blades, hub, main shaft, gear box, high speed shaft and generator. Natural frequency and torsional stiffness of drivetrain are calculated and analyzed.

  • PDF