• 제목/요약/키워드: Vibration durability

검색결과 285건 처리시간 0.026초

A Research on Stray-Current Corrosion Mechanism of High Voltage Cable Connector on Electrification Vehicles

  • Lee, Hwi Yong;Ahn, Seung Ho;Im, Hyun Taek
    • Corrosion Science and Technology
    • /
    • 제18권4호
    • /
    • pp.117-120
    • /
    • 2019
  • Considering the tendency of development of electrification vehicles, development and verification of new evaluation technology is needed because of new technology applications. Recently, as the battery package is set outdoors of an electric vehicle, such vehicles are exposed to corrosive environments. Among major components connected to the battery package, rust prevention of high-voltage cables and connectors is considered the most important issue. For example, if corrosion of high voltage cable connectors occurs, the corrosion durability assessment of using an electric vehicle will be different from general environmental corrosion phenomena. The purpose of this study is to investigate the corrosion mechanism of high voltage cable connectors of an electric vehicle under various driving environments (road surface vibration, corrosion environment, current conduction by stray current, etc.) and develop an optimal rust prevention solution. To improve our parts test method, we have proposed a realistic test method to reproduce actual electric vehicle corrosion issues based on the principle test.

시트백 프레임의 형상에 따른 자동차 시트의 내구성 해석에 관한 연구 (Durability Analysis of Automotive Seat According to the Shape of Seat Back Frame)

  • 최계광;조재웅
    • 한국기계가공학회지
    • /
    • 제19권10호
    • /
    • pp.16-23
    • /
    • 2020
  • Vehicle seats provide a comfortable ride for passengers by properly absorbing vibrations and shocks transmitted during driving. Vibration analyses on three models with different shapes were carried with the same material properties and constraint conditions. By varying the height of the seat-back, models 1, 2, and 3 were designed according to the inclined angle of the seat-back frame. Models 1, 2, and 3 were modeled with relatively simple designs using CATIA. The areas touching the buttocks of passengers show the most deformation. This work shows that seat durability and stability can vary depending on the shape of the seat design.

진동계측 시스템의 구축과 실습선 내 거주성에 미치는 진동 평가에 관한 연구 (A Study on the Construction of Vibration Measurement System and Evaluation of Vibration Related Habitability on the Training Ship)

  • 남택근;김득봉;이돈출
    • 해양환경안전학회지
    • /
    • 제16권1호
    • /
    • pp.135-140
    • /
    • 2010
  • 선박에서의 주요한 진동발생 원인으로는 주기관과 프로펠러에 의한 것이다. 이러한 가진원으로부터 발생한 진동은 선박에 탑재된 장비의 내구성에 악영향을 미치고, 선박의 승조원에게도 불쾌감 등의 나쁜 영향을 미치게 된다. 본 연구에서는 선박에서 발생하는 진동을 계측하지 위한 시스템을 구축하였고 실제 실습선의 거주공간에서 발생하는 진동을 계측하였으며, 계측된 진동을 바탕으로 ISO6954:2000E에 의거하여 거주성 평가를 행하였다.

비공기압 방식 소형 산업용 바퀴의 설계를 위한 수치해석과 진동실험에 관한 연구 (A study on design of non-pneumatic small industrial wheel using FEM and vibration tests)

  • 홍필기;손창우;서태일
    • Design & Manufacturing
    • /
    • 제12권3호
    • /
    • pp.48-54
    • /
    • 2018
  • This paper presents a numerical study for the development of a low-noise low-vibration industrial wheel for non-pneumatic wheel to significantly reduce vibration and noise. For this, design, injection molding and performance testing were performed. Various geometric shapes and materials were taken into account. For numerical analysis, ANSYS, LS-Dyna, and ABAQUS were used to predict the behavior of the wheel under different loadings based on various design changes. Based on this, 4 prototypes were fabricated by changing the design of wheels and molds, and various vibration and noise tests were carried out. A vibration tester was developed and tested to perform the vibration noise test considering durability. A prototype and test of the final wheel was performed. In the case of the vibration test, the vibration levels were 81.16dB and 80.66dB, which were below the target 90dB. Noise levels were 53.20 dB and 52.55 dB below the target 65dB. In the case of the impact resistance test, it was confirmed that there was no change in appearance after impact. The product weight was measured to be 174g compared to the target of 190g.

승용차 동력전달계에 대한 클러치 디스크 특성의 영향 고찰 (An Investigation on the Effects of Clutch Disk Characteristics for a Passenger Car Driveline)

  • 김영흡;박동훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.105-111
    • /
    • 2008
  • The clutch with torsional damper is installed on a passenger car with manual transmission, which not only transmits the power generated by engine to the transmission but also absorbs the shock and vibration from the engine. The torsional damper in the clutch dissipates the torsional vibration energy and eliminates the resonance in the driveline but high damping in the damper causes the increase of the vibration level which is against the comfort and durability. In this study, a dynamic model for the passenger car driveline with manual transmission was developed to investigate the vibration and the effects of characteristics of the driveline. With the dynamic model, the vibration characteristics of driveline were examined by the mode analysis and driving simulation, and the effects of hysteresis torque and spring constant were investigated. The vehicle tests with prototype torsional dampers were preformed and the test results showed good agreements with the simulation.

  • PDF

압전 복합재료 작동기 LIPCA를 이용한 보의 진동 제어 (Vibration Control of Beam using Piezoceramic Composite Actuator LIPCA)

  • 아리프수하리요노;구남서;박훈철;윤광준
    • 한국군사과학기술학회지
    • /
    • 제8권4호
    • /
    • pp.130-135
    • /
    • 2005
  • This paper presents application possibility of Lightweight Piezoceramic Composite Actuator(LIPCA) to suppress vibration of dynamic structures as an actuator. LIPCA is composed of a piezoelectric layer, a carbon/epoxy layer and glass/epoxy layers. When compared to the bare piezoelectric ceramic(PZT), LIPCA has advantages such as high performance, durability and reliability. In this study, performances of LIPCA have been estimated in an active vibration control system. Experiments were performed on an aluminum beam with cantilever configuration. In this test, strain gages and single LIPCA are attached on the aluminum beam with epoxy resin. Digital ON-OFF control algorithm is applied into the system to exhibit performance of LIPCA as actuator in active vibration control system. First, we performed static actuation test of bare PZT and LIPCA in order to show the superiority of LIPCA. Secondly, we carried out beam vibration control test using LIPCA. The results showed LIPCA could suppress free vibration of the aluminum beam, which means that LIPCA can be applied as an actuator to control vibration of dynamic structures.

승용차 동력전달계에 대한 클러치 디스크 특성의 영향 고찰 (An Investigation on the Effects of Clutch Disk Characteristics for a Passenger Car Driveline)

  • 김영흡;박동훈
    • 한국소음진동공학회논문집
    • /
    • 제19권3호
    • /
    • pp.243-250
    • /
    • 2009
  • The clutch with torsional damper is installed on a passenger car with manual transmission, which not only transmits the power generated by engine to the transmission but also absorbs the shock and vibration from the engine. The torsional damper in the clutch dissipates the torsional vibration energy and eliminates the resonance in the driveline but high damping in the damper causes the increase of the vibration level which is against the comfort and durability. In this study, a dynamic model for the passenger car driveline with manual transmission was developed to investigate the vibration and the effects of characteristics of the driveline. With the dynamic model, the vibration characteristics of driveline were examined by the mode analysis and driving simulation, and the effects of hysteresis torque and spring constant were investigated. The vehicle tests with prototype torsional dampers were preformed and the test results showed good agreements with the simulation.

트위스트 런 운동기구의 내구성 향상에 관한 해석 (An Analysis on Durability Improvement of Twist Run Exercise Equipment)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제13권5호
    • /
    • pp.116-122
    • /
    • 2014
  • In this study, 2 kinds of twist run models as exercise equipments are compared by durability analyses of fatigue and vibration. Maximum equivalent stresses are shown as 3.3 MPa and 16.6 MPa at the parts of stress concentrations at models 1 and 2. As the values becomes much lower than yield stress of this models, these models are shown to be safe designs. Model 1 becomes stronger than model 2 at natural frequency analysis. Fatigue lives become lowest at four axis parts and one axis part respectively in cases of models 1 and 2. Maximum damage probability at fatigue is shown to be 2.4% near the average stress of 0 in case of model 1 but this probability becomes 0.6 % in case of model 2. Model 1 has the maximum damage possibility 4 times more than model 2 at these states. As the result of this study is applied by the design of twist run, the prevention on fatigue damage and the durability are predicted.

철도구조물의 연직진동 제어기법에 관한 연구 (Study for the Vertical Vibratioin Control Method of Railway Structure)

  • 최은수;이주탁;유성문;이유인
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.1242-1247
    • /
    • 2011
  • This study investigates vertical vibration control method for railway structure by using vertical vibration control device. The device consists of high stiffness polyurethane spring and friction damper recognized by National Center for Earthquake Engineering Research of USA for durability. To confirm the capacity of vertical vibration control, at first, behavior equation is established by considering correlation among the components. Then, hysteresis curve is drawed from behavior equation. By considering both dynamic behaviors and material nonlinearities, more reasonable behavior of the device can be simulated. After that, the Validity of the vibration control trend is proved by FEM(Finite Element Method).

  • PDF

댐퍼 클러치 스프링의 진동 해석에 관한 연구 (Study on the Vibration Analysis of Damper Clutch Spring)

  • 조재웅;한문식
    • 한국기계가공학회지
    • /
    • 제10권4호
    • /
    • pp.22-30
    • /
    • 2011
  • This study analyzes harmonic vibration with natural frequency according to the configuration of damper clutch. In the case of double spring, equivalent stress at same direction of the revolution at inner and outer coil spring is over 30% as compared with at its opposite direction. Natural frequency or harmonic response with maximum deformation in case of the less coil pitch is below 3Hz as compared with in case of the more coil pitch. As the coil pitch of damper spring as the case 2 or 4 becomes smaller, its mass and deformation can be large. In these cases, spring constant and natural frequency become smaller. In the case 5 or 6 of double spring at natural vibration or harmonic response, the frequency becomes over 300Hz. As the result of this study is applied by the design of damper spring, the damage at its connected part is prevented and the durability can be predicted.