Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Preventive maintenance of induction motors has been a topic great interest to industry because of their wide range application of industry. Since the use of mechanical sensors, such as vibration probes, strain gauges, and accelerometers is often impractical, the motor current signature analysis (MACA) techniques have gained murk popularity as diagnostic tool. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is independent of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current, voltage, temperatures, vibration and speed of the motor. The DSPs share information from each sensor or DSP through DPRAM with hardware implemented semaphore. And it communicates the motor status through field bus (CAN, RS485). From the designed system, we get primitive sensors data for the case of normal condition and two abnormal conditions of 3 phase induction motor control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using CAN protocol.
Background: Pneumonia is commonly seen in outpatient clinics. it is widely known as the most common cause of death from infectious disease. Pneumonia has been diagnosed by its typical symptoms, chest X-ray and blood tests. However, both chest X-rays and blood tests have limitations in diagnosis. Thus primary care clinicians usually have been constrained due to a lack of adequate diagnostic tools. Vibration response imaging (VRI) is a newly emerging diagnostic modality, and its procedure is non-invasive, radiation-free, and easy to handle. This study was designed to evaluate the diagnostic usefulness of the VRI test among pneumonia patients and to consider its correlation with other conventional tests such as Chest X-ray, laboratory tests and clinical symptoms. Methods: VRI was performed in 46 patients diagnosed with pneumonia in Konkuk University Medical Center. VRI was assessed in a private and quiet room twice: before and after the treatment. Sensors for VRI were placed on a patient's back at regular intervals; they detected pulmonary vibration energy produced when respiration occurred and presented as specific images. Any modifications either in chest X-ray, C-reactive protein (CRP), white blood cell count (WBC) or body temperature were compared with changes in VRI image during a given time course. Results: VRI, chest X-ray and CRP scores were significantly improved after treatment. Correlation between VRI and other tests was not clearly indicated among all patients. But relatively severe pneumonia patients showed correlations between VRI and chest X-ray, as well as between VRI and CRP. Conclusion: This study demonstrates that VRI can be safely applied to patients with pneumonia.
진동해석을 이용한 기계계통의 진단에는 시간영역(time domain)에서의 해석 과 FFT(Fast Fourier Transform)를 이용한 주파수영역(frequency domain)에서의 해석 을 생각할 수 있다. 이중 FFT 방법은 고속연산기의 출현과 물리적인 이해의 편이성 등오로 인하여 널리 사용되고 있으나, 시간 함수인 비정상 상태신호(nonstationary signal)의 경우는 주파수영역 해석만으로는 물리적 이해를 구하는데는 한계가 있다. 그래서, 최근 신호처리기법 분야에서는 주파수영역 해석과 시간영역 해석을 보완적 으로 표현할 수 있는 기간-주파수영역 해석기법에 많은 연구가 진행되고 있다. 그중 대표적인 신호처리 기법은 Wigner-Ville Distribution이며, 특히 본 Wigner-Ville Distribution은 많은 물리적 의미를 갖고 있어 주요 연구 대상이며, 많은 응용분야 를 갖고 있다. 그러나, 기계계통중 회전체의 진동신호을 분석하여 고장 진단 및 감시를 용이하기 위해서는 새로운 형태의 시간.주파수영역 해석기법이 필요하다. 본 논문에서는 회전체의 진동신호 분석이 용이하도록 물리적인 의미와 응용상에 중점을 둔 방향서 Wigner-Ville 분포라는 시간-주파수 분석기법을 제안하였고, 회전체를 이용한 실험을 실시하였다. 그 결과 제안된 방향성 Wigner-Ville Distribution은 회전체 진동신호를 시간-주파수 영역에서 잘 표현하고 있으며, 특히 회전체의 수직 및 수평방향 진동신호로 부터 얻어지는 방향성 Wigner-Ville Distribution은 각 주파수 성분의 방향성 정보를 갖고 있어 이를 회전체의 고장 진단 및 감시에 이용 하였다.
음성질환의 진단을 위하여 사용하는 검사법은 여러가지가 있으며 음성발생의 기전에 근거하여 공기역학적 검사로부터 어음청취검사에 이르기까지 다양하게 시도되고 있다. 이중 성대점막의 진동양상은 간접후두경 만으로는 정확히 관찰하기 어려우므로 후두스트로보스코피, 초고속촬영법, 광전, 전기, 초음파등을 이용한 글로토그라피 및 카이모그라피 등이 사용되고 있는데 임상적으로는 후두스트로보스코피가 가장 널리 사용되어지고 있다. 저자들은 1992년 4월 부터 1993년 3월까지 연세대학교 의과대학 음성언어의학연구소에서 음성검사를 시행하였던 환자들을 대상으로 질환별 스트로보스코피소견의 특징을 파악함으로써 후두질환의 진단 및 치료에 도움을 얻고자 하였다.
Liang Dong ;Zeyu Chen;Runan Hua;Siyuan Hu ;Chuanhan Fan ;xingxin Xiao
Nuclear Engineering and Technology
/
제55권3호
/
pp.827-838
/
2023
Centrifugal pump is a key part of nuclear power plant systems, and its health status is critical to the safety and reliability of nuclear power plants. Therefore, fault diagnosis is required for centrifugal pump. Traditional fault diagnosis methods have difficulty extracting fault features from nonlinear and non-stationary signals, resulting in low diagnostic accuracy. In this paper, a new fault diagnosis method is proposed based on the improved particle swarm optimization (IPSO) algorithm-based variational modal decomposition (VMD) and relevance vector machine (RVM). Firstly, a simulation test bench for rotor faults is built, in which vibration displacement signals of the rotor are also collected by eddy current sensors. Then, the improved particle swarm algorithm is used to optimize the VMD to achieve adaptive decomposition of vibration displacement signals. Meanwhile, a screening criterion based on the minimum Kullback-Leibler (K-L) divergence value is established to extract the primary intrinsic modal function (IMF) component. Eventually, the factors are obtained from the primary IMF component to form a fault feature vector, and fault patterns are recognized using the RVM model. The results show that the extraction of the fault information and fault diagnosis classification have been improved, and the average accuracy could reach 97.87%.
Rapid detection of damages in civil engineering structures, in order to assess their possible disorders and as a result produce competent decision making, are crucial to ensure their health and ultimately enhance the level of public safety. In traditional intelligent health monitoring methods, the features are manually extracted depending on prior knowledge and diagnostic expertise. Inspired by the idea of unsupervised feature learning that uses artificial intelligence techniques to learn features from raw data, a two-stage learning method is proposed here for intelligent health monitoring of civil engineering structures. In the first stage, $Nystr{\ddot{o}}m$ method is used for automatic feature extraction from structural vibration signals. In the second stage, Moving Kernel Principal Component Analysis (MKPCA) is employed to classify the health conditions based on the extracted features. In this paper, KPCA has been implemented in a new form as Moving KPCA for effectively segmenting large data and for determining the changes, as data are continuously collected. Numerical results revealed that the proposed health monitoring system has a satisfactory performance for detecting the damage scenarios of a three-story frame aluminum structure. Furthermore, the enhanced version of KPCA methods exhibited a significant improvement in sensitivity, accuracy, and effectiveness over conventional methods.
As higher reliability and accuracy on production facilities are required to detect incipient faults, a diagnostic system for predictive maintenance of the facility is highly recommended. In this paper, we present a study on the application of vibration signals to diagnose faults for a Rotating Machinery using the Mahalanobis Distance-Taguchi System. RMS, Crest Factor and Kurtosis that is known as the Statistical Methods and the spectrum analysis are used to diagnose faults as parameters of Mahalanobis distance.
Objective: To correlate temporomandibular joint (TMJ) morphology and position with cone-beam computed tomography (CBCT) images, Joint Vibration Analysis (JVA), and Jaw Tracker (JT) to develop a radiation-free, dynamic method for screening and monitoring the TMJ in orthodontic patients. Methods: A total of 236 orthodontic patients without symptoms of TMJ disorders who had undergone CBCT were selected for the JVA and JT tests in this cross-sectional study. TMJ position and morphology were measured using a three-dimensional analysis software. JT measurements involved six opening-closing cycles, and JVA measurements were performed using a metronome to guide the mouth opening-closing movements of the patients. The correlations among the three measuring devices were evaluated. Results: Abnormalities in condylar surface morphology affected the mandibular range of motion. The cut-off value results show that when various measurement groups are within a certain range, abnormalities may be observed in morphology (area under the curve, 0.81; P < 0.001). A 300/< 300 Hz ratio ≥ 0.09 suggested abnormal morphology (P < 0.05). Correlations were observed among the maximum opening velocity, maximum vertical opening position, and joint spaces in the JT measurements. Correlations were also observed between the > 300/< 300 Hz ratio, median frequency, total integral, integral < 300 Hz, and peak frequency with joint spaces in the JVA measurements. Conclusions: JT and JVA may serve as rapid, non-invasive, and radiation-free dynamic diagnostic tools for monitoring and screening TMJ abnormalities before and during orthodontic treatment.
본 논문에서는 웨이퍼 이송 로봇의 고장 진단에 시간 영역에서의 통계적 분석 방법을 적용하고, 진동 및 토크 신호의 중요 특성을 파악하는 방법을 제안한다. 이를 기반으로 데이터의 차원을 축소하기 위해 주성분 분석을 사용하고, 유클리드 거리와 Hotelling의 T-제곱 통계량을 활용하여 고장 진단 알고리즘을 개발했다. 이 알고리즘은 관측된 데이터에 대해 고장 상태를 분류하는 결정 경계를 형성한다. 속도 파라미터를 고려한 데이터 분류는 진단 정확도를 향상시킴을 확인했다. 이러한 접근 방식은 고장 진단의 정확성과 효율성을 개선하는 데 기여한다.
기계시스템의 결함을 진단하기 위한 방법으로 패턴인식 기법이 널리 사용되고 있다. 진동신호의 변화를 감지하여 기계시스템의 건전성을 판단하는 방법이 패턴인식 기법이다. 대표적 패턴 인식기법으로 최근 은닉 마르코프 모델과 인공신경망이 여러 분야에서 사용되고 있다. 본 연구에서는 결함진단에 은닉 마르코프 모델과 인공신경망을 혼합한 방법이 제시되었으며 결함진단 대상 구조물로는 크랙을 가진 회전하는 풍력터빈 블레이드가 선정되었다. 본 연구에서는 크랙발생 여부뿐만 아니라 그 위치 및 크기도 동시에 진단하고자 하였다. 아울러서 본 연구에서는 일정 주파수들을 갖는 모멘트를 대상 구조물에 가함으로써 외부 잡음에도 불구하고 높은 결함진단 확률을 가질 수 있도록 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.