• Title/Summary/Keyword: Vibration condition

Search Result 2,074, Processing Time 0.035 seconds

Coupling loss factor evaluation using loss factor based on the SEA (SEA에 기초를 둔 손실계수를 이용한 결합계수의 평가)

  • 안병하;황선웅;김영종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.568-571
    • /
    • 1997
  • The overall aim of this paper is to determine coupling loss factor using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one directional power flow between two sub structures. Using these conditions, it is possible to find the coupling loss factor equation. The comparison between theory of power transmission on conjunction and above equation, show a good agreement in simple beam structure. To check the effectiveness of above equation, it was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure.

  • PDF

A study on the Development of the Portable Device for Safety Diagnosis and Dynamic Characteristics Analysis of Elevator using Fuzzy Algorithm (Fuzzy 알고리즘을 이용한 엘리베이터 안전진단 및 동특성 분석 포터블 장비 개발)

  • 김태형;김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.199-202
    • /
    • 2001
  • An elevator system, which is essential equipment for vertical movement of an object, as a property of building, has been driven by various expenditures and purposes. Since developing electrical control technology, control system are highly developed. The elevator system has expanded widely, but a data accuracy acquisition technique and safety predict technique for securing system safety is still at a basic level. So, objective verification for elevator confidence condition requires an absolute accuracy measurement technique. Therefore, this study is executed in order to acquire a method of depending on sense of a manager with simple numeric measurement data, and to construct a logical, analytical foresight system for more efficient elevator management system. As an artificial intelligence for diagnosis, the fuzzy inference algorithm is used for foreseeing the system in this thesis, because the fuzzy algorithm is the most useful method for resolving subjective ideas and a vague judgment of humans. The fuzzy inference algorithm is developed for each sensor signal(i.e. vibration, velocity, current).

  • PDF

Structural Optimization under Equivalent Static Loads Transformed from Dynamic Loads Based on Displacement (변위에 기초한 동하중에서 변환된 등가정하중하에서의 구조최적설계)

  • Gang, Byeong-Su;Choe, U-Seok;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1949-1957
    • /
    • 2000
  • All the loads in the real world act dynamically on structures. Since dynamic loads are extremely difficult to handle in analysis and design, static loads are utilized with dynamic factors. The dyna mic factors are generally determined based on experiences. Therefore, the static loads can cause problems in precise analysis and design. An analytical method based on modal analysis has been proposed for the transformation of dynamic loads into equivalent static load sets. Equivalent static load sets are calculated to generate an identical displacement field in a structure with that from dynamic loads at a certain time. The process is derived and evaluated mathematically. The method is verified through numerical tests. Various characteristics are identified to match the dynamic and the static behaviors. For example, the opposite direction of a dynamic load should be considered due to the vibration response. A dynamic bad is transformed to multiple equivalent static loads according to the number of the critical times. The places of the equivalent static load can be different from those of the dynamic load. An optimization method is defined to use the equivalent static loads. The developed optimization process has the same effect as the dynamic optimization which uses the dynamic loads directly. Standard examples are solved and the results are discussed

A Study on Thermal and Modal Characteristics for EGR System with Dimpled Rectangular Tube (딤플 사각 튜브형 배기 가스 재순환 시스템의 열 및 진동 특성에 관한 연구)

  • Seo, Young-Ho;Heo, Sung-Chan;Kwon, Young-Seok;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.115-125
    • /
    • 2008
  • Recently, Exhaust Gas Recirculation (EGR) system which re-flow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine has been used to solve the serious air pollution. For the design and mass production of EGR system, it is essential to ensure structural integrity evaluation. The EGR system consisted of ten dimpled oval core rectangular tubes, two fix-plates, two coolant pipes, shell body and two flanges in this study. To confirm the safety of the designed system, finite element modeling about each component such as the dimpled oval core tube with the dimpled shape and others was carried out. The reliability of EGR system against exhaust gas flow with high temperature was investigated by flow and pressure analysis in the system. Also, thermal and strength analysis were verified the safety of EGR system against temperature change in the shell and tubes. Furthermore, modal analysis using ANSYS was also performed. From the results of FE analysis, there were confirmed that EGR system was safe against the flow of exhaust gas, temperature change in EGR system and vibration on operation condition, respectively.

The Basic Study on the Leak Test Method of the Hydrogen Exhaust Pipe for a Fuel Cell Vehicle (연료전지차용 수소배출 배관 및 배관이음매 안전성 평가를 위한 기초 연구)

  • Suh, Ho-Cheol;Park, Kyoung-Suk;Seo, Kyung-Doo;Yong, Gee-Joong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.185-192
    • /
    • 2011
  • This study deals with a basic proposal to prove the safety for the exhausted fittings of the hydrogen fuel cell vehicle. First, this study was approached to numerical analysis solving to close the exact boundary condition (Axial, Bending, Lateral) and the second, this study produced the Lateral movement equipment for the vibration. For the numerical analysis, This study was considered with the exact solution of Lateral movement and the resonance effect for durability sample according to fitting positions. The second, This study was made for special equipment for displacement/gas leak and the frequency because the domestic samples were comparing with foreign fitting and foreign fitting for the hydrogen fuel cell vehicle. The result of this study was satisfied with domestic fittings for the basic reference but it need more test because of other situation for hydrogen fuel cell vehicle.

Structural Integrity of a Fuel Assembly for the Secondary Side Pipe Breaks (2차측 배관파단에 대한 핵연료 집합체의 구조 건전성)

  • Jhung, M. J.
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.827-834
    • /
    • 1996
  • The effect of pipe breaks in the secondary side is investigated as a part of the fuel assembly qualification program. Using the detailed dynamic analysis of a reactor core, peak responses for the motions induced from pipe breaks are obtained for a detailed core model. The secondary side pipe breaks such as main steam line and economizer feedwater line braksare considered because leak-before-break methodology has provided a technical basis for the elimination of double ended guillotine breaks of all high energy piping systems with a diameter of 10 inches or over in the primary side from the design basis. The dynamic responses such as fuel assembly shear force, bending moment, axial force and displacement, and spacer grid impact loads are carefully investigated. Also, the stress analysis is performed and the effect of the secondary side pipe breaks on the fuel assembly structural integrity under the faulted condition is addressed.

  • PDF

A Study on Fault Detection using Fuzzy Trend Monitoring Technique of UAV Turbofan Engine (퍼지 경향 감시 기법을 이용한 무인기용 터보팬 엔진의 손상 탐지에 관한 연구)

  • Kong, C.D.;Kho, S.H.;Ki, J.Y.;Kho, H.Y.;Oh, S.H.;Kim, J.H.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.345-349
    • /
    • 2007
  • In this study a fuzzy trend monitoring method for detecting the engine mechanical faults was proposed through analyzing performance trends of measurement data. The trend monitoring is an engine conditioning method which can find engine faults by monitoring important measuring parameters such as fuel flow, exhaust gas temperatures, rotational speeds, vibration. etc. Using engine condition data set as a input which generated by linear regression analysis of real engine instrument data, an application of fuzzy logic in diagnostics estimate a cause of fault in each components.

  • PDF

Structural monitoring and identification of civil infrastructure in the United States

  • Nagarajaiah, Satish;Erazo, Kalil
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.51-69
    • /
    • 2016
  • Monitoring the performance and estimating the remaining useful life of aging civil infrastructure in the United States has been identified as a major objective in the civil engineering community. Structural health monitoring has emerged as a central tool to fulfill this objective. This paper presents a review of the major structural monitoring programs that have been recently implemented in the United States, focusing on the integrity and performance assessment of large-scale structural systems. Applications where response data from a monitoring program have been used to detect and correct structural deficiencies are highlighted. These applications include (but are not limited to): i) Post-earthquake damage assessment of buildings and bridges; ii) Monitoring of cables vibration in cable-stayed bridges; iii) Evaluation of the effectiveness of technologies for retrofit and seismic protection, such as base isolation systems; and iv) Structural damage assessment of bridges after impact loads resulting from ship collisions. These and many other applications show that a structural health monitoring program is a powerful tool for structural damage and condition assessment, that can be used as part of a comprehensive decision-making process about possible actions that can be undertaken in a large-scale civil infrastructure system after potentially damaging events.

Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure

  • Ramteke, Prashik Malhari;Panda, Subrata K.;Sharma, Nitin
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.865-875
    • /
    • 2019
  • The current article proposed to develop a geometrical model for the analysis and modelling of the uniaxial functionally graded structure using the higher-order displacement kinematics with and without the presence of porosity including the distribution. Additionally, the formulation is capable of modelling three different kinds of grading patterns i.e., Power-law, sigmoid and exponential distribution of the individual constituents through the thickness direction. Also, the model includes the distribution of porosity (even and uneven kind) through the panel thickness. The structural governing equation of the porous graded structure is obtained (Hamilton's principle) and solved mathematically by means of the isoparametric finite element technique. Initially, the linear frequency parameters are obtained for different geometrical configuration via own computer code. The comparison and the corresponding convergence studies are performed for the unidirectional FG structure for the validation purpose. Finally, the impact of different influencing parameters like aspect ratio (O), thickness ratio (S), curvature ratio (R/h), porosity index (λ), type of porosity (even or uneven), power-law exponent (n), boundary condition on the free vibration characteristics are obtained for the FG panel and discussed in details.

Experimental Studies on Aerodynamic Characteristics of Pantograph system for HEMU-400X (차세대 고속열차(HEMU-400X)의 팬터그래프 시스템에 대한 공력특성 연구)

  • Lee, Yeong-Bin;Rho, Joo-Hyun;Kwak, Min-Ho;Lee, Jae-Ho;Kim, Kyu-Hong;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.133-138
    • /
    • 2010
  • This paper describes on aerodynamic characteristics of pantograph system for Next generation high speed train(HEMU-400). The pantograph which supports electric power is located on the roof. Because of this, it generate high drag, severe acoustic noise and vibration which induced unstable flow due to complex configuration. Therefore, the design of high efficient pantograph needs to increase operational speed. In this research, wind tunnel tests were performed to design a high efficient pantograph system using 1/4 scaled model which were KTX-II pantograph, single arm pantograph and periscope type pantograph with square cylinder shape panhead and optimized shape panhead. For real operational condition, flow directions were adapted by rotation of pantograph. From this results of wind tunnel, it is checked that the pantograph with optimized panhead and single arm type or periscope type has better aerodynamic performance. In addition, lift control device and spoiler in pantograph were tested to investigate the validity of application.

  • PDF