• 제목/요약/키워드: Vibration component

검색결과 717건 처리시간 0.024초

부분구조의 민감도해석을 이용한 버스차체의 진동특성 분석 (Analysis on Vibration Characteristics of Bus Body Structure using Sensitivity Analysis of Component Structures)

  • 김진희;이상범;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.354-357
    • /
    • 2004
  • In this paper, a sensitivity analysis technique is presented for performing effective structural optimization of bus system. Design sensitivities are analyzed on natural frequency of bus substructures using super-element. Vibration modes of substructure, which large affect on the global vibration mode of bus B.I.W., are found through the sensitivity analysis using the chain rule. And design variables, which are determined from the sensitivity analysis, are changed through optimum design.

  • PDF

Optimum Vibration Angle for Transporting Granular Materials on Linear Conveyors

  • Keraita, James Nyambega
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권2호
    • /
    • pp.3-7
    • /
    • 2008
  • Vibratory conveyors are widely used in industry to transport granular materials and products. A theoretical point mass model for vibratory conveying was studied. The results agreed well with experimental observations. The model theory included the resting, sliding and flight states of the material. Each state was considered separately when determining the equations of motion. For the coefficients of restitution, values of zero for the normal component and 0.8 for the tangential component were found to be appropriate for modeling the collisions of the granular particles with the conveying surface. The vibration angle had a large influence on the mode and rate of transport. There was an optimum vibration angle for a given set of conditions. The optimum vibration angle decreased and was better defined as the coefficient of friction increased. The results suggest the existence of an optimum dimensionless track acceleration (throw number), which does not support general industrial practice in which the track acceleration is limited when the feed cycle becomes erratic and unstable.

부분 구조물의 민감도 분석을 이용한 버스차체의 진동분석 (Vibration Analysis of Bus Structure using Sensitivity Analysis of Bus Component Structures)

  • 이상범
    • 한국생산제조학회지
    • /
    • 제18권4호
    • /
    • pp.355-361
    • /
    • 2009
  • In this paper, an analysis technique is presented for performing the effective design of bus structure. Sensitivity analysis is carried out for the natural frequency of component structures consisting of bus B.I.W. Local vibration modes of substructure, which large affect on the global vibration mode of the bus B.I.W., are obtained through the sensitivity analysis technique using the mathematical chain rule. And also the design variables, which are determined from the sensitivity analysis, are redesigned through optimum design process. The proposed analysis technique shows that the bus structure can be effectively designed considering the vibration characteristics.

  • PDF

Frame Vibration Suppression Method for Sensorless PMSM Drive Applications

  • Suthep, Supharat;Wang, Yankai;Ishida, Muneaki;Yamamura, Naoki;Yubai, Kazuhiro;Komada, Satoshi
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2182-2191
    • /
    • 2016
  • This study proposes a novel frame anti-vibration controller for position sensorless PMSM drive application. This controller is called specific component reduction controller (SCRC). SCRC can function without an accelerometer and can achieve speed variable control. This study mainly comprises the following phases. First, the position sensorless control method will be provided. Second, the frame vibration model and load torque ripple will be shown. Third, SCRC will be discussed and its stability will be analyzed. Finally, experimental results show that SCRC can achieve speed variable anti-vibration control and compensate target frequency torque ripple.

Turbulence Generation by Ultrasonically Induced Gaseous Cavitation in the $CO_2$Saturated Water Flow

  • Lee, Seung-Youp;Park, Young-Don
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1203-1210
    • /
    • 2003
  • Emission of ultrasonic vibration to turbulent flow promotes the turbulence generation due to the resonantly oscillating pressure field and thereby induced cavitation. In addition, ultrasonic vibration is well transmitted through water and not dissipated easily so that the micro-bubbles involved in the fluid induce the gaseous cavitation if the bubbles are resonated with the ultrasonic field. In the present study, we found through LDV measurement that the gaseous cavitation induced by ultrasonic vibration to CO$_2$saturated water flow in the rectangular cross-sectioned straight duct enhances turbulence much more than the case of non-ultrasonic or normal ultrasonic conditions without gaseous cavitation. We also found that the fluctuating velocity component induced by emitting the ultrasonic vibration in normal direction of a rectangular channel flow can be redistributed to stream-wise component by the agitation of gaseous cavitation.

기계류부품의 가진시험 조건에 관한 연구 (Study of Vibration Test Condition for Machinery Component)

  • 김형의;박종원;정동수;강보식
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제6권1호
    • /
    • pp.27-36
    • /
    • 2006
  • It is increasingly important to ensure that a given vibration test specification of a particular machinery component is appropriately established by considering its real environmental conditions. Vibration test standards for electrical components are well documented, for example in an IEC 60068 series, while standards for machinery components are rarely found except a few military standards. Thus many vibration tests are performed based on the military standards. However, a test based on these military standards often results in over-testing, and under-testing in some cases due to the different environmental conditions. Also, these standards require an appropriate tailoring that may not be easily accomplished. In this paper, various international and military standards are compared and investigated to obtain test specifications relevant for machinery components. Also appropriate tailoring methods are demonstrated through a case study.

  • PDF

부분구조 합성법을 이용한 배기계의 진동해석 (Vibration Analysis of an Exhaust System with Bellows Using the Component Mode Synthesis)

  • 임재문;김민수;이귀영
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1833-1840
    • /
    • 1993
  • An efficient vibration analysis method, Component Mode Synthesis(CMS), for an exhaust system with bellows is presented. Analyses are performed for two types of bellows, where characteristics of vibration modes affecting idle shake and interior noise of a vehicle are examined. Also analyzed are the contributions of an exhaust and engine mounting system to the idle shake and interios noise. Comparison between the analysis and test is in good agreement, hence the CMS method is shown to be efficient and valid.

3-3 진동 모드 압전 캔틸레버 에너지 하베스터의 제조 및 전기적 특성 (Fabrication and Electric Properties of Piezoelectric Cantilever Energy Harvesters Driven in 3-3 Vibration Mode)

  • 이민선;김창일;윤지선;박운익;홍연우;백종후;조정호;박용호;장용호;최범진;정영훈
    • 한국전기전자재료학회논문지
    • /
    • 제30권5호
    • /
    • pp.263-269
    • /
    • 2017
  • A piezoelectric cantilever energy harvester (PCEH) driven in longitudinal (3-3) vibration mode was fabricated, and its electrical properties were evaluated by varying the resistive load. A commercial PZT piezoelectric ceramic with a high piezoelectric charge constant ($d_{33}$) of 520 pC/N and the interdigitated (IDT) electrode pattern was used to fabricate the PCEH driven in longitudinal vibration. The IDT Ag electrode embedded piezoelectric laminates were co-fired at $850^{\circ}C$ for 2 h. The 3-3 mode PCEH was successfully fabricated by attaching the piezoelectric laminates to a SUS304 elastic substrate. The PCEH exhibited a high output power of 3.8 mW across the resistive load of $100k{\Omega}$ at 100 Hz and 1.5 G. This corresponds to a power density of $10.3mW/cm^3$ and a normalized global power factor of $4.56mW/g^2{\cdot}cm^3$. Given the other PCEH driven in transverse (3-1) vibration mode, the 3-3 mode PCEH could be better for vibration energy harvesting applications.

스펙트럼 해석에 의한 자탈형 콤바인의 진동 특성 고찰 (A Study on the Vibration Characteristics of a Head-Feeding Combine by Spectral Analysis)

  • 최중섭
    • Journal of Biosystems Engineering
    • /
    • 제26권1호
    • /
    • pp.11-20
    • /
    • 2001
  • Experiments under the stationary and harvesting condition, were performed in order to investigate the vibration characteristics of a head-feeding combine. 6 degrees of freedom components of acceleration at the location of the center of the gravity, and 3 degrees of freedom components of acceleration at the location of the operator seat were measured independently. The vibration characteristics of the combine were estimated with the power spectral density of the time series data of accelerations. From this research, the following results were obtained. 1. Vibration of a head-feeding combine under the stationary condition(engine, thresher and cutter are driven without harvesting) is mainly influenced by the engine. Further, 1/3, 1/2 (sub-harmonic) frequency components of the engine are observed besides engine driving frequency component(45Hz). 2. Vibration of a head-feeding combine under the harvesting condition is influenced by the engine, threshing unit and driving unit. Namely, some kinds of vibration frequency components in harvesting are observed compared with stationary condition. Further, sub-harmonic frequency components of the engine are observed besides engine driving frequency component as same as stationary condition. From these results, it may be concluded that vibration of a head-feeding combine is characteristics of semi-periodic and nonlinear vibration.

  • PDF

비접촉식 진동측정 장치를 이용한 정밀 스테이지의 진동특성 평가시험 (Vibration experiment of precision stage that use laser vibrator)

  • 이재우;이강욱;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1224-1230
    • /
    • 2007
  • In this study, a new modal test method is presented to evaluate vibration characteristic of the nano imprint stage system. Since it is difficult to measure vibration level without contacting the machine component, non contacting modal test method, laser scanning system is ultrared. Finite element analysis results are compared with the modal test results.

  • PDF