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Vibratory conveyors are widely used in industry to transport granular materials and products. A theoretical point
mass model for vibratory conveying was studied. The results agreed well with experimental observations. The
model theory included the resting, sliding and flight states of the material. Each state was considered separately
when determining the equations of motion. For the coefficients of restitution, values of zero for the normal
component and 0.8 for the tangential component were found to be appropriate for modeling the collisions of the
granular particles with the conveying surface. The vibration angle had a large influence on the mode and rate of

transport.

There was an optimum vibration angle for a given set of conditions. The optimum vibration angle

decreased and was better defined as the coefficient of friction increased. The results suggest the existence of an
optimum dimensionless track acceleration (throw number), which does not support general industrial practice in
which the track acceleration is limited when the feed cycle becomes erratic and unstable.

NOMENCLATURE

Ay = amplitude of vibration

x,, = distance of mass body m in the x direction
v = distance of mass body m in the y direction
a, = limiting normal acceleration

g, = normal acceleration due to gravity

o= inclination angle to the horizontal

[ = angle of projection

&, = normal coefficient of restitution

& = tangential coefficient of restitution

I' = throw number

@ = vibration angle

1= coefficient of friction

@ = circular frequency (angular velocity)

1. Introduction

It is rarely possible to economically replace the transport of small
parts by vibratory conveyors in industrial production lines using any
other technology. Linear conveyors are particularly advantageous
when individual parts must be separated from a group and fed at a
controlled rate into an assembly, or into inspection, weighing, or
packaging equipment. Therefore, it is worthwhile to determine the
optimal operating conditions of such conveyors. Vibratory conveyors
may be driven by an electric motor with a fixed eccentric shaft (or
rotating weight) or an electromagnet. The generated vibrations are
then controlled to create circular, elliptical, or linear movement.
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Linear vibration is usually desired, especially for conveying and
screening purposes. Elliptical motion is used to drive screens, packers,
shakeouts, or bin-dischargers. For pure conveying purposes, circular
drives do not have many applications except in annular conveyors.

Recently, the study of dry granular matter on vibratory conveyors
has attracted renewed interest due to its technological relevance in
industrial applications.'* A granular material is defined as a
conglomeration of discrete solid macroscopic particles characterized
by a loss of energy whenever the particles interact. The constituents
that compose granular materials must be large enough that they are
not subject to thermal motion fluctuations. Thus, the lower size limit
for grains in granular material is about 1 um. For the upper size limit,
the physics of granular materials may be applied to ice floes where
the individual grains are icebergs. As transport phenomena involve
nonlinear interactions of multiparticle systems and the individual
particles are irregular in shape, volume, and density, the investigation
of vibrating granular materials is a challenging subject. Determina-
tion of the precise transport rate is even more difficult.

This paper presents a dynamic analysis of moving parts on a
linear vibratory conveyor. A combination of computational and
experimental analyses was used to investigate the effects of vibration
angle on the transport rate of granular materials with the aim of
determining an optimum value. The use of an optimum vibration
angle will greatly enhance the performance of devices such as
automatic combination weighers, where the vibrating line feeders are
required to supply a given amount of products (at high speed) to
hoppers for weighing, combination, and selection operations for each
cycle. With better combination algorithms™® and advanced sensor
technologies and software techniques,”® efforts are now being
directed toward improving the transport rate to increase the number of
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weight measurements performed per minute.

2. Theoretical Background

2.1 Model and Analysis of Forces Affecting Motion

Theoretical methods for determining the optimal vibratory
conveying conditions are becoming important. For example,
MacDonald and Stone® developed a simple linear vibratory feeder
mode! using MacPascal, while Lim'" used Turbo C++. Berkowitz
and Canny! developed a model for performing parameter
enumeration, analyses, and Markov model building of part feeders
using dynamic impact simulation. However, most previous studies
have been restricted to the sliding transport mode. More recently,
Han and Lee'? used frictional impact analysis theory to describe the
dynamics of vibratory conveying in bowl feeders operating in
hopping mode. The results showed that the hopping regime can be
classified into periodic and chaotic regions, which can be identified
by numerical simulation and experimental analysis.

Figure 1 shows a part on a straight vibrating plate that is inclined
at a small angle to the horizontal. The plate is at the upper limit of its
motion. This forms the basis of the model considered in this research
and contains appropriate modifications to an earlier approach
proposed by Boothroyd" to include a detailed study of the hopping
regime.

Fig. 1 Forces acting on a part during vibratory feeding

We assume that the forcing mechanism provides a simple
harmonic motion, the motion of the part is independent of its shape,
and the mass of the plate is much greater than the mass of the part, m.
Thus, the dynamic motion of the plate is unaffected by the part during
the process. Factors that could affect the rigid body conveying
velocity include the angle of vibration, ¢, amplitude of the plate
vibration, 4y, coefficient of friction, 4, inclination of the plate to the
horizontal, ¢, and the operating frequency, @. These factors were
incorporated in our analyses.

For small amplitudes, the part will remain stationary on the plate
because the acting parallel inertia force will be too small to overcome
the frictional resistance, F, between the part and the plate. By
analysis of forces, the conditions required for forward and backward
sliding to occur during the vibration cycle are

Forward sliding: 4, > Hitana ')

g, cotp+u

a —tano
Backward sliding: —* > L-tna

g, cotp—u

@

where a,, is the limiting normal plate acceleration and g,, is the normal
acceleration due to gravity. The dimensionless normal plate
acceleration a,/g, is given by

2 .
a, _ A, " sing

(&)

g, gcosa

For example, for values of 1= 0.75, a = 2.5°, and ¢ = 25°, the
ratio a,/g, must be greater than 0.274 for forward sliding to occur and
greater than 0.507 for backward sliding to occur. Thus, if the ratio is
say 0.4, the part will start to slide forward at some instant when the
plate approaches the upper limit of its motion, but it will not slide
backwards at any instant during the vibration cycle. If the ratio is 0.6,
backward sliding will occur during the vibration cycle after a period
of forward sliding. Backward sliding is likely to occur when the
plate approaches the lower limit of its motion. The ratio a,/g, is
often referred to as the throw number (T).

At sufficiently large vibration amplitudes, the part can leave the
plate and travel in free flight. This occurs when the y component of
the acceleration becomes greater than gravity in the same direction.
This condition is equivalent to the normal reaction, N, between the
part and the plate becoming zero. The part will leave the plate
during part of the vibration cycle if

S S )
g,

Figure 2 shows a graphical illustration of the limiting conditions
for the various modes of conveying for 4 = 0.75 and a = 2.5°.
Backward sliding can be avoided during the vibration cycle by
employing large vibration angles, but this does not necessarily
translate into high forward conveying rates. The velocity and
inclination of the part to the plate at the start of the free flight each
have a large influence on the conveying rate.
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Fig. 2 Limiting conditions for various modes of vibratory conveying

Flight 2

um/s
1

Flight | Flight 3

Sliding

e
Fig. 3 Typical motion sequence while hopping

Figure 3 shows a typical motion sequence. Clearly, as the
backward sliding time increases (a condition favored by small
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vibration angles), the effective hop J; is diminished. 1If the projection
angle S increases above 45°, the total hop Jr diminishes even though
the part spends more time in free flight. Consequently, the effective
hop will be reduced, even if there is no backward sliding. The total
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Fig. 4 The state of motion diagram

hop is reduced with increases in the vibration angle' mainly due to
the corresponding increase in the projection angle, Thus, there exists
an optimum vibration angle for a given set of conditions.

After free flight, a number of distinct types of motion (see Fig. 4)
are possible, depending on the local plate conditions at the point of
impact and the impact velocity. We successively analyzed the
distinct types of motion as they occurred and determined the transport
rate from the mean values of velocities along the plate over several
cycles of the conveying process.

2.2 Phase of Motion Analysis

2.2.1 Resting and Sliding Phases
The equations of motion of the body on the plate are

mx, =-mgsina T F

)

my, =N-mgcosa

The negative or positive signs for the frictional force, F, are used to
indicate sliding in the positive or negative x direction, respectively.
The subscript m indicates the body, which is considered as a point
mass. For both resting and sliding cases,

V=D, ©)

Using Egs. (3) and (5), the dimensionless acceleration of the body
during the sliding phase is

Xm(t)=tango|:%($,u—tana)i,usinwt} )
Recall that
X(t)=snot
){ (t)=cosat ®)
X(t)=-sinowt

Sliding starts when the acceleration of the mass and trough are equal.
This occurs when

4
sin @f = il(y_tanoc)tan¢
I' lzxutane ®)

Similar equations were derived by Sloot and Kruyt.! The velocity of
the point mass can be obtained by integrating Eq. (9) with respect to
time. The boundary condition states that the velocities of the point
mass and plate are equal at the start of a positive or negative sliding
phase. A second integration yields the dimensionless relative

displacement.

2.2.2 Flight Phase and Collisions

A flight phase occurs if the normal force N becomes zero. The
motion is similar to that of a projectile. At the start of flight, the
mass and plate have the same y coordinate and y velocity. Using
Eq. (5) and the y counterparts of Eq. (8), it follows that the flight
phase starts at

ot=sin" [lj (10)
r

The end of flight can be derived from the condition of equal y
coordinates. The tangential acceleration acting on the point mass
remains equal to

X,=—gsina
or

. 11
sz—(%jtanatan(o (n

The velocity of the point mass can be determined by integrating this
expression and applying a boundary condition consisting of a known
tangential velocity at the end of the flight. The tangential velocity
can be determined from the movement phase that occurred before the
flight. The relative displacement can then be obtained through a
second integration.

Collisions of the mass with the plate are assumed to be inelastic
and instantaneous. Hence, the normal and tangential velocities of the
mass directly afler a collision can be related to the corresponding
velocities directly before the collision via the tangential and normal
restitution coefficients, & and g,

'X.‘.m,i = 8t x(tt)

. . 12)

ym,i =8n y(tl)
Here, ¢; denotes the impact time of the mass and the plate. The
restitution coefficients account for the energy loss of the block at
impact and can take on arbitrary values between 0 and 1.

3. Experimental Setup and Procedures

One of the channels was disassembled from a previously
developed automatic combination weigher and used for the
experimental investigation. Figure 5 shows a photograph of the line
feeder together with the in-feed circular feeder and hoppers. The
vibrating line feeder consisted of a base member below a spring-
supported trough (pan). During operation, the drive transmitted
vibrations through the support springs to the trough. The generated
vibrations were controlled to create a linear movement. The
conveying surface consisted of a polished flat steel plate, and the
conveyed components were small self-tapping screws, each weighing
about2.5 g.

First, the physical parameters were determined in order to carry
out the theoretical analysis. In the tests, the vibration amplitude of
the trough was varied by adjusting the input voltage to the driving
unit while maintaining the operating frequency at 60 Hz. The
horizontal (a = 0) trough was driven sinusoidally in time. Although
it has been shown that improvements in the transport rate can be
obtained by inclining the conveyors at small negative angles', the
results presented are only for the sliding case. Theoretical
explanations do not envisage this phenomenon to extend to the
hopping regime.

The vibration angle was determined experimentally using
accelerometers and was altered by adjusting the mounting angle of
the vibrodriver. As the vibration frequency was fixed, the vibration
amplitude 4, for each input voltage and the corresponding throw
number I' could be calculated. The coefficient of friction was
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determined by common laboratory procedures’® and the velocity was
measured by tracking a colored part that was carried along with the
bulk screws. Due to setup difficulties, the velocity was not measured
for a case with net backward motion. Several repetitions were
necessary to yield valid average values for the coefficient of friction
as well as the conveying velocity.

pan hoppers

.. B
Fig. 5 A photograph of the experimental setup (also in Keraita®)

4. Results and Discussion

4.1 Coefficient of Restitution

Modeling impacts can be a difficult task. We set the normal
component of the restitution coefficient to zero, which suggests that
parts being conveyed did not bounce. However, bouncing normally
occurs in practice at very high track accelerations and leads to
undesirable wear and damage of the parts as well as an erratic
transportation mode. The approach we used to determine a suitable
value for the tangential component of the restitution coefficient was to
present theoretical results for high, moderate, and low energy losses
(ie,&=0.2,0.5, and 0.8), and then compare them with experimental
data. The computations followed the equations developed in
Section2.2. The theoretical results for the three restitution
coeflicients were essentially the same before the hopping regime
commenced (I > 1).

Figure 6 shows the results obtained for a practical vibration angle
of 25° at an experimental coefficient of friction of g = 0.35. In the
figure, the mean conveying velocity was normalized by dividing by
the driving velocity, Aw cos ¢. A value of ¢, = 0.8 best modeled the
impacts. The results revealed a sharp fall in the mean conveying
velocity at I' = 4.5, thought to be mainly due to the parts landing on
the trough as it approached its lower limit of motion in successive
cycles, leading to considerable backward sliding. A similar
phenomenon was observed by El hor and Linz* in their study of an
annular vibratory conveyor. At I > 6.0, the theoretical predictions
began to differ significantly from the experimental results, which
became rather erratic. These results suggest that there is an optimum
throw number that should be used, as opposed to the general
industrial practice of operating the conveyors at high track
accelerations as long as the feeding cycle is stable.

4.2 Optimum Vibration Angle

The average coefficient of friction determined from the
experiments was 0.35. However, the experimental coefficient of
friction is prone to considerable error. Therefore, the calculated
mean conveying velocity for two other coefficients, # = 0.25 and 0.60,
are presented in Fig. 7. This serves to reveal any trend in the
variation of the optimum vibration angle with the coefficient of
friction. No distinction was made between the static and kinetic
coefficients of friction when calculating the conveying velocities.
All results are presented for a practical maximum normal trough

acceleration with a throw number of T"=1.8.

Figure 7 indicates that the optimum vibration angle decreased and
became more defined as the coefficient of friction increased. As
expected, an increase in friction led to an increase in conveying at
different throw numbers

Figure 8 shows the calculated conveying velocities with vibration
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However, this trend was lost at high vibration angles angle at the
experimentally determined coefficient of friction (4=0.35) for
different throw numbers. Theoretical results for ' =4.5 are shown
without supporting experimental data for clarity; the data were very
similar to the case of T' = 3.0. The results show that the optimum
vibration angle did not vary much with the throw number. An
increase in the coefficient of friction or in the throw number ceased to
have a significant effect on the conveying velocity at very high
vibration angles.

5. Conclusions

A theoretical point mass model was used to predict the mean
conveying velocity of granular matter on linear vibratory conveyors
for both sliding and hopping modes of transport. The vibration angle
had a large influence on the mode and rate of transportation, and this
should be taken into account when designing conveyors. There
existed an optimum vibration angle for a given set of conditions.
This optimum vibration angle remained fairly constant over a wide
range of practical throw numbers.

The transport rate did not increase monotonically with the throw
number during the hopping mode, where the conveying velocity was
generally high. These results suggest that the conveyor should be
operated at an optimum throw number, as opposed to the general
industrial practice of operating the conveyors at high track
accelerations as long as the feeding cycle is stable. Factors such as
power consumption and wear and damage of the parts must be taken
into consideration when determining the optimum throw number.
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