• Title/Summary/Keyword: Vibration and shock

Search Result 576, Processing Time 0.026 seconds

Review on the Shock Characteristics of the MIL-S-901 Medium Weight Shock Machine (MIL-S-901 중간중량 충격시험기의 하중특성에 관한 고찰)

  • Chung, J.H.;Kim, B.H.;Huh, Y.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1149-1153
    • /
    • 2000
  • All critical equipment installed aboard naval ships and submarines is required to be shock-qualified by tests on the MIL-S-901 shock test machines where testing is practical. The intent of the shock requirements is to produce combat vessels which are resistant to the underwater explosion weapon attack. To efficiently design equipment for passing a series of shock tests, the shock environment of the shock test machine should be clearly identified. In this paper, the shock characteristics of the MIL-S-901 Medium Weight Shock Machine(MWSM) are reviewed, based on the existing test data. An analytical model for the MWSM is also discussed.

  • PDF

Review on the Shock Characteristics of the MIL-S-901D Light Weight Shock Machine (MIL-S-901D 경중량 충격시험기의 하중특성에 관한 고찰)

  • 정경훈;김병현;양용진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.750-754
    • /
    • 2001
  • All critical equipment installed aboard naval ships and submarines is required to be shock-qualified by tests on the MIL-S-901D shock test machines where testing is practical. The intent of the shock requirements is to produce combat vessels which are resistant to the underwater explosion weapon attack. To efficiently design equipment for passing a series of shock tests, the shock environment of the shock test machines should be clearly identified. In this paper, the shock characteristics of the MIL-S-901D Light Weight Shock Machine(LWSM) are reviewed, based on the existing test data.

  • PDF

Verification of Launch Vibration and Shock Isolation Performance for Spaceborne Compressor Vibration Isolator with SMA Mesh Washer (형상기억합금 메쉬 와셔를 이용한 우주용 냉각기 진동절연기의 발사 진동 및 충격 저감 성능검증)

  • Lee, Myeong-Jae;Han, Je-Heon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.517-524
    • /
    • 2014
  • Micro-vibration induced by on-board equipments such as fly-wheel and cryogenic cooler with mechanical moving parts affects the image quality of high-resolution observation satellite. Micro-vibration isolation system has been widely used for enhancing the pointing performance of observation satellites. In general, the micro-vibration isolation system requires a launch locking mechanism additionally to guarantee the structural safety of mission payloads supported by the isolation system with low stiffness under launch environment. In this study, we propose a passive launch and on-orbit vibration isolation system using shape memory alloy mesh washers for the micro-vibration isolation of spaceborne compressor, which does not require the additional launch locking mechanism. The basic characteristics of the isolator were measured in static and free vibration tests of the isolator, and a simple equivalent model of the isolator was proposed. The effectiveness of the isolator design in a launch environment was demonstrated through sine vibration, random vibration and shock tests.

Shock Test Facilities and their Application at KARI SITC (한국항공우주연구원의 충격시험설비 및 운용 현황)

  • 김홍배;이상설;문상무;우성현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.940-944
    • /
    • 2001
  • Shock environments are generally classified two categories; One is mechanical shock environments encountered in handling, transportation, and service environments. The other is pyrotechnic shock (or pyroshock) environments generally initiated by firing of an ordnance item to separate or release a structural member of fastener. The objective of this paper is to present a set of shock test methods - specific characteristics induced by many shock test devices, test objects properties, and shock environments. In addition, it is introduced the application of shock test in Korean aerospace development program and others with shock test facilities of Korea Aerospace Research Institute.

  • PDF

A Vibration and Shock Environmental Tests for the Missile Installed in the Naval Vessels (함정운용 유도탄 전기체(全機體)의 진동충격 환경시험)

  • Kwon, Byung-Hyun;Kwon, Jong-Hwa;Ahn, Sung-Woo;Lee, Ho-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.809-812
    • /
    • 2005
  • This paper explains environmental tests of vessel-launched missiles, verifying if a fully assembled missile performs properly from disturbance on delivery by vehicles or naval vessels. We also have operated vibration tests by ground and naval transportation as well as shock tests by naval transportation before firing. The environmental tests have adopted Military Standard Specification and confirmed missile's reliability by performance tests, followed by missile's development. However, this significant testing which have meaning was dong by the missile's body and not with parts.

  • PDF

Optimal Design of MR Shock Absorbers Using Finite Element Method (유한요소법을 이용한 MR 쇽 업소버의 최적설계)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.375-380
    • /
    • 2007
  • This paper presents optimal design of controllable magnetorheological (MR) shock absorbers for passenger vehicle. In order to achieve this goal, two MR shock absorbers (one for front suspension; one for rear suspension) are designed using an optimization methodology based on design specifications for a commercial passenger vehicle. The optimization problem is to find optimal geometric dimensions of the magnetic circuits for the front and rear MR shock absorbers in order to improve the performance such as damping force as an objective function. The first order optimization method using commercial finite element method (FEM) software is adopted for the constrained optimization algorithm. After manufacturing the MR shock absorbers with optimally obtained design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of conventional shock absorbers. In addition, vibration control performances of the full-vehicle installed with the proposed MR shock absorbers are evaluated under bump road condition and obstacle avoidance test.

  • PDF

Optimal Design of Magnetorheological Shock Absorbers for Passenger Vehicle via Finite Element Method (자기유변유체를 이용한 승용차량 쇽 업소버의 유한요소 최적설계)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.169-176
    • /
    • 2008
  • This paper presents optimal design of controllable magnetorheological(MR) shock absorbers for passenger vehicle. In order to achieve this goal, two MR shock absorbers (one for front suspension; one for rear suspension) are designed using an optimization methodology based on design specifications for a commercial passenger vehicle. The optimization problem is to find optimal geometric dimensions of the magnetic circuits for the front and rear MR shock absorbers in order to improve the performance such as damping force as an objective function. The first order optimization method using commercial finite element method(FEM) software is adopted for the constrained optimization algorithm. After manufacturing the MR shock absorbers with optimally obtained design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of conventional shock absorbers. In addition, vibration control performances of the full-vehicle installed with the proposed MR shock absorbers are evaluated under bump road condition and obstacle avoidance test.

A Study of the ER Insert for Reducing the Shock Wave (충격파 차단을 위한 ER Insert의 기초 연구)

  • Kim, Jung-Yeob;Jung, Jae-Min;Kim, Jae-Hwan;Choi, Seung-Bok;Kim, Kyung-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.612-618
    • /
    • 2000
  • The underwater explosion which has the high energy brings about the shock wave and the pulsating gas bubble. In general, structural vibration from the shock wave is more serious than the pulsating gas bubble. This shock wave may damage the important fragile structures and equipment in ship. This paper demonstrates that the shock wave propagating the structure can be reduced by ER inserts. The wave transmission of ER inserted beam is theoretically derived using Mead & Markus model, and the theoretical results are composed with the finite element analysis results. To experimentally verify the ER insert, ER insert in an aluminum plate is made and two piezoceramic disks are used as transmitter and receiver. Details of the experiment are addressed.

  • PDF

Optimum Design for Shock Absorber of Gullwing Door (걸윙도어 쇽업쇼버의 최적설계)

  • Jang, Y.J.;Lee, S.B.;Yim, H.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.188-191
    • /
    • 2005
  • In this paper, a design optimization technique is presented for determining the stiffness and the damping coefficient of the shock absorber that is used in the Gullwing door system of passenger car. The contact force between the shock absorber and stopper link, when the door is opened, is set up as objective function, and the stiffness and the damping coefficient are set up as design variables. ADAMS optimization module (SQP method) is applied in the design optimization process. This study shows that the stiffness and the damping coefficient of the shock absorber can be effectively determined in initial design stage of the Gullwing door.

  • PDF

Development of Vibration Absorption Device for the Transportation-Trailer System (IV) - Connecting Hitch, Leaf Spring and Shock Absorber Suspension - (수송 트레일러의 충격흡수장치 개발 (IV) - 동력경운기 적재함의 연결히치, 판스프링, 쇽업쇼바 -)

  • Hong, Jong Ho;Wu, Yong Gen
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.359-364
    • /
    • 2012
  • Purpose: This study was conducted to analyze the vibration absorption effect for the agricultural product transportation-trailer equipped with vibration absorbable connecting hitch, leaf spring suspension, and shock absorber simultaneously (HLS), comparing with the trailer equipped with vibration absorbable connecting hitch only(H), trailer equipped with connecting hitch and leaf spring suspension (HL), and existing trailer with no vibration absorption device (E). Methods: Vertical accelerations were measured at driver seat and front, middle, rear parts of trailer bottom with no load for 4 types of transportation-trailer, and analyzed using FFT analyzer. Results: The magnitude of average vibration accelerations occurred up to 20 Hz, at this low frequencies the severe damage for agricultural products could be represented, was lower (maximum 6 times) for HLS trailer compared with H trailer. And vibration absorption effect for HLS trailer was also higher up to 40-80 Hz and 80-100 Hz, but the difference was less. At driver seat, the vibration absorption effect was high severely for HL and HLS trailer, and the magnitude of vibration acceleration was showed less difference in comparing at trailer bottom. Conclusions: From the test results, it could be recommended that the agricultural products transportation trailer should be equipped with vibration absorption device of HLS.