• 제목/요약/키워드: Vibration analysis system

검색결과 3,298건 처리시간 0.025초

코어 다중가공에서 공구마모 예측을 위한 기계학습 데이터 분석 (Machine Learning Data Analysis for Tool Wear Prediction in Core Multi Process Machining)

  • 최수진;이동주;황승국
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.90-96
    • /
    • 2021
  • As real-time data of factories can be collected using various sensors, the adaptation of intelligent unmanned processing systems is spreading via the establishment of smart factories. In intelligent unmanned processing systems, data are collected in real time using sensors. The equipment is controlled by predicting future situations using the collected data. Particularly, a technology for the prediction of tool wear and for determining the exact timing of tool replacement is needed to prevent defected or unprocessed products due to tool breakage or tool wear. Directly measuring the tool wear in real time is difficult during the cutting process in milling. Therefore, tool wear should be predicted indirectly by analyzing the cutting load of the main spindle, current, vibration, noise, etc. In this study, data from the current and acceleration sensors; displacement data along the X, Y, and Z axes; tool wear value, and shape change data observed using Newroview were collected from the high-speed, two-edge, flat-end mill machining process of SKD11 steel. The support vector machine technique (machine learning technique) was applied to predict the amount of tool wear using the aforementioned data. Additionally, the prediction accuracies of all kernels were compared.

우주 인증용 대전자전중계기의 전원공급기 설계 및 구현에 대한 연구 (The Study on the Implementation and Design of Power Supply Unit of Digital of Dehop/Rehop Transponder of EQM)

  • 김기중
    • 한국전자통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.437-442
    • /
    • 2021
  • 본 연구는 우주 인증용 대전자전중계기용 전원공급기의 설계 및 구현에 대해 기술하였다. 위성버스의 PLDIU(Payload Distribution and Interface Unit)와 전원공급기의 인터페이스를 제시하였고, 우주환경에 대한 WCA(Worst Case Analysis)를 통하여 SEU(Single Event Upset) 등의 발생에 대한 회로 오동작 가능성을 최소화 시켰다. 발사환경 시 발생하는 진동 및 우주 방사능에 의한 TID(Total Ionizing Dose)에 대한 시뮬레이션을 통해 신뢰성 있는 전원공급기를 설계하였으며, 제작 후 우주환경시험을 통하여 해당 구성품에 대한 환경 시험 규격에 만족함을 확인하였다.

전기 자동차 무선 충전 시스템 기술 동향 및 분석 (A Technology Trend and Analysis of Electric Vehicle Wireless Charging System)

  • 임종균;이동용
    • 한국전자통신학회논문지
    • /
    • 제16권2호
    • /
    • pp.255-260
    • /
    • 2021
  • 최근 화석연료의 고갈로 인해 전기 자동차의 중요성이 점차 커지고 있다. 전기 자동차를 사용하기 위해서는 자동차에 내장된 배터리를 수시로 충전해야 한다. 전기 자동차는 소음, 진동에 있어 매우 뛰어난 성능을 구현한다. 하지만 배터리의 한계상 1회 충전 시 주행거리가 내연 자동차보다 상당이 짧으며, 배터리 충전 시간도 주유 시간에 비해 상대적으로 매우 오래 걸린다는 단점이 있다. 전기 자동차용 배터리를 충전하는 방식은 플러그인 방식과 무선 충전 방식이 있다. 본 논문에서는 전기 자동차용 무선 충전 기술에 대한 소개와 주요 국가의 기술 개발 현황 및 표준을 소개하였다.

가공정도 향상을 위한 Pipe Cutting Machine의 설계 개선 (Design Alterations of a Pipe Cutting Machine for the Improved Precision Machining)

  • 길사근;노승훈;신호범;김영조;김동욱;노호철
    • 반도체디스플레이기술학회지
    • /
    • 제17권3호
    • /
    • pp.53-58
    • /
    • 2018
  • The modern industry requires the precision machining as well as the high productivity. The machine tool structure should be evaluated in aspects such as durability, static stability, precision rate and the dynamic stability which is one of the most critical characteristics in determining the magnitude of vibrations. In this study, the dynamic properties of a pipe cutting machine were investigated to analyze the structural vibrations of the machine, and further to improve the structural stability and precision machining. Frequency response test and computer simulation have been utilized for the analysis and the design alterations. And the result shows that proposed design alterations can reduce the vibrations of the machine substantially.

Dynamic assessment of the seismic isolation influence for various aircraft impact loads on the CPR1000 containment

  • Mei, Runyu;Li, Jianbo;Lin, Gao;Zhu, Xiuyun
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1387-1401
    • /
    • 2018
  • An aircraft impact (AI) on a nuclear power plant (NPP) is considered to be a beyond-design-basis event that draws considerable attention in the nuclear field. As some NPPs have already adopted the seismic isolation technology, and there are relevant standards to guide the application of this technology in future NPPs, a new challenge is that nuclear power engineers have to determine a reasonable method for performing AI analysis of base-isolated NPPs. Hence, dynamic influences of the seismic isolation on the vibration and structural damage characteristics of the base-isolated CPR1000 containment are studied under various aircraft loads. Unlike the seismic case, the impact energy of AI is directly impacting on the superstructure. Under the coupled influence of the seismic isolation and the various AI load, the flexible isolation layer weakens the constraint function of the foundation on the superstructure, the results show that the seismic isolation bearings will produce a large horizontal deformation if the AI load is large enough, the acceleration response at the base-mat will also be significantly affected by the different horizontal stiffness of the isolation bearing. These concerns require consideration during the design of the seismic isolation system.

자속 포화에 의한 PMSM 센서리스 위치 추정 오차 분석 및 보상 기법 (Analysis of Estimated Position Error by Magnetic Saturation and Compensating Method for Sensorless Control of PMSM)

  • 박병준;구본관
    • 전기학회논문지
    • /
    • 제68권3호
    • /
    • pp.430-438
    • /
    • 2019
  • For a pump or a compressor motor, a high periodic load torque variation is induced by the mechanical works, and it causes system vibration and noise. To minimize these problems, load torque compensation method, injecting periodic torque current, could be utilized. However, with the sensorless control method, which is usually utilized in the pump and compressor for low cost, the periodic torque current degrades the accuracy of the rotor position estimation owing to the inductance variation. This paper analyzes the rotor position and speed estimation error of sensorless control method with constant motor parameters under period loading. Assuming the constant speed by the accurate load torque compensation, the speed error equation is derived in frequency domain with inductance depending on the stator current. Further, it is also shown that the rotor position error could be minimized by compensating the inductance variation. The simulation and experimental results verify that the derived speed error model and the validity of the inductance compensation method.

Evaluation of pulse effect on frequency content of ground motions and definition of a new characteristic period

  • Yaghmaei-Sabegh, Saman
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.457-471
    • /
    • 2021
  • This study aims at providing a simple and effective methodology to define a meaningful characteristic period for special class of earthquake records named "pulse-like ground motions". In the proposed method, continuous wavelet transform is employed to extract the large pulse of ground motions. Then, Fourier amplitude spectra obtained from the original ground motion and the residual motion is simply compared. This comparison permits to define a threshold pulse-period (Tp∗) as the threshold period above which the pulse component has negligible contributions to the Fourier amplitude spectrum. The effect of pulse on frequency content of motions was discussed on the light of this definition. The advantage and superior features of the new definition were related to the inelastic displacement ratio (IDR) for single-degree-of-freedom systems with period equal to one half of the threshold period. Analyses performed for the proposed period at three ductility levels u=2,4,6 were compared with the results obtained at half of pulse period derived from wavelet analysis, peak-point method and the peak of product of the velocity and the displacement response spectra (Sv x Sd). According to the results, pulse effects on inelastic displacement ratio seem to be more important when $\frac{T_p^*}{T}=2$ (T is the fundamental vibration period of system). The results showed that utilizing of the proposed definition could facilitate an enhanced understanding of pulse-like records features.

Cavitation optimization of single-orifice plate using CFD method and neighborhood cultivation genetic algorithm

  • Zhang, Yu;Lai, Jiang;He, Chao;Yang, Shihao
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1835-1844
    • /
    • 2022
  • Single-orifice plate is wildly utilized in the piping system of the nuclear power plant to throttle and depressurize the fluid of the pipeline. The cavitation induced by the single-orifice plate may cause some serious vibration of the pipeline. This study aims to find the optimal designs of the single-orifice plates that may have weak cavitation possibilities. For this purpose, a new single-orifice plate with a convergent-flat-divergent hole was modeled, a multi-objective optimization method was proposed to optimize the shape of a single-orifice plate, while computational fluid dynamics method was adopted to obtain the fluid physical quantities. The reciprocal cavitation number and the developmental integral were treated as cavitation indexes (e.g., objectives for the optimization algorithm). Two non-dominant designs ultimately achieved illustrated obvious reduction in the cavitation indexes at a Reynolds number Re = 1 ×105 defined based on fluid velocity. Besides, the sensitivity analysis and temperature effects were also performed. The results indicated that the convergent angle of the single-orifice plate dominants the cavitation behavior globally. The optimal designs of single-orifice plates result in lower downstream jet areas and lower upstream pressure. For a constant Reynolds number, the higher temperature of liquid water, the easier it is to undergo cavitation. Whereas there is a diametric phenomenon for a constant fluid velocity. Moreover, the regression models were carried out to establish the mathematical relation between temperature and cavitation indexes.

구기자 가지의 진동 특성 (Vibration Characteristics of Boxthorn (Lycium Chinense Mill) Branch)

    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2001년도 동계 학술대회 논문집
    • /
    • pp.292-309
    • /
    • 2001
  • Modulus of elasticity, modulus of rigidity, damping ratio, and natural frequency of three varieties of boxthorn(Lycium chinense Mill) (Cheongyang #2, Cheongyang gugija, and Cheongyang native) branches were analyzed. Modulus of elasticity and modulus of rigidity of the boxthorn branch was determined using standard formula after simple beam bending and torsion test, respectively, using an universal testing machine. Damping ratio and natural frequency of branches were determined using a system consisted of an accelerometer, a PC equipped with A/D converter, and a software for data analysis. Relationship between the elastic modulus and branch diameter in overall varieties and branch types showed a good correlation (r$\cong$-0.81). There was, however, no correlation between torsional rigidity and branch diameter. The internal damping results were highly variable and the overall range of the damping ratio of the boxthorn branch was 0.014 -0.087, which indicated that the branch was a lightly damped structure. The natural frequency of the boxthorn branch was in the range of 89-363 rad/s for the overall varieties and branch types. A good correlation (r$\cong$0.82) existed between the natural frequency and branch diameter in overall varieties and branch type.

  • PDF

Experimental investigation on flow field around a flapping plate with single degree of freedom

  • Hanyu Wang;Chuan Lu;Wenhai Qu;Jinbiao Xiong
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.1999-2010
    • /
    • 2023
  • Undesirable flapping motion of discs can cause the failure of swing check valves in nuclear passive safety systems. Time-resolved particle image velocimetry (PIV) was employed to investigate the flow characteristics around a free-to-rotate plate and the motion response, with the Reynolds numbers, based on the hydraulic diameter of the channel, from 1.32 × 104 to 3.95 × 104. Appreciable flapping motion (±3.52°) appeared at the Reynolds number of 2.6 × 104 with the frequency of 5.08 Hz. In the low-Reynolds-number case, the plate showed negligible flapping. In the high-Reynolds-number case, the deflection angle increased with reduced flapping amplitude. The torque from the fluid determined the flapping amplitude. In the low-Reynolds-number case, Karman vortices were absent. With increasing Reynolds numbers, Karman vortices developed behind the plate with larger deflection angles. Strong interaction between the wake flow from the leading and trailing edge of the plate was observed. Based on power spectrum density (PSD) analysis, the vortex shedding frequency coincided with the flapping frequency, and the amplitude was positively correlated to the strength of the vortices. Proper orthogonal decomposition (POD) modes evince that, in the case of appreciable motion, coherent structures exhibited a larger spatial scale, enhancing the magnitude of the external torque on the plate.