• 제목/요약/키워드: Vibration analysis

Search Result 9,935, Processing Time 0.034 seconds

Numerical Analysis of Vibration Characteristics in Deep Water Tank (수치해석에 의한 심수 탱크구조물의 진동에 관한 연구)

  • 배성용;홍봉기;배동명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1079-1084
    • /
    • 2003
  • A liquid storage rectangular tank structures are used in many fields of civil, mechanical and marine engineering. Especially, Ship structures have many tanks in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks ill contact with fluid near engine or propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tank structures. In the previous report, we have developed numerical tool of vibration analysis of 3-dimensional tank structure using finite elements for plates and boundary elements for fluid region. In the present report, using the numerical analysis, vibrations characteristics in deep water tank are investigated and discussed.

  • PDF

Correlation Analysis for Electormagnetic Vibration Source and RMF of Small IPMSM (소형 IPMSM의 전자기적 진동원과 가진력의 상관관계 분석)

  • Lee, Won-Sik;Cho, Gyu-Won;Jun, Byung-Kil;Kim, Gyu-Tak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.1986-1991
    • /
    • 2016
  • The vibration soucre of motor has a electromagnetic and mechanical causes. The most widely known, electromagnetic reasons are cogging torque and RMF(Radial magnetic force). Recently, analysis of the cogging torque has been made actively. but analysis of the RMF was not filled. So, in this paper, analyzed RMF. the vibration test were performed for the basic and reduced model of cogging torque and RMF. And it analyzed for the effect of each factor on the vibration. Finally, the vibration was formulated for stator's weight and RMF. To this end, natural, cogging torque and RMF of frequency were analyzed and these relationships were considered.

Vibration Analysis and Optimization of the Dynamic Characteristics of the Press Machine (The 1st Report, Vibration Analysis of the Press Machine) (프레스 기계의 진동해석과 동특성의 최적화(제 1보, 프레스 기계의 진동해석))

  • ;長松 昭男
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.34-41
    • /
    • 1990
  • Mode Synthesis Method is applied to analyize the vibration characteristics of the press machine sold at present. Vibration analysis of the machine has not been done thoroughly as far, because of its complicated structure and much bigger unlinearity of its vibration characteristics. The press was disassembled by parts, and it was experimented by the exciting techniques and curve fitting methods, and analyzed by the Mode Synthesis Method. The 2 results were showed good agreements at each part. We confirming it, the machine was assembled, and experimented and analyzed by the same method. Also good agreements between 2 methods were obtained. In addition, impact responses of the actual moving press were agreed with the analyzed values by the Mode Synthesis Method. And we found that the first bending mode of the slide was ruling the vibration characteristics of the press.

  • PDF

A study on the estimation of an equivalent system of a local vibration system of a huge structure and the Optimum Structural Modification Method (거대 구조물의 국부진동계의 등가계 산출과 이를 이용한 최적구조변경법)

  • 황문주;박석주;이기문
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.364-369
    • /
    • 1997
  • It is very difficult to execute the vibration analysis of a huge structure, which takes up much time and expense. In this paper we intend to make the equivalent system of a local vibration system of a huge structure with a view to improving the dynamic characteristics and reducing time and expense. First of all, upper deck structure model is maded. And we perform the vibration analysis by the Substructure Synthesis Method and execute the exciting test for the upper deck structure model, and observe the coincidences of two results to confirm the reliability of the analyzing tools used. To make the equivalent system, we give boundary condition to sub-structure that want to be modified and execute the Sensitivity Analysis Method and the Optimum Structural Modification Method. And we execute the structural modification of the equivalent system.

  • PDF

The effect of vibratory stimulus on pain perception during intraoral local anesthesia administration in children: a systematic review and meta-analysis

  • Tirupathi, Sunny Priyatham;Rajasekhar, Srinitya
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.20 no.6
    • /
    • pp.357-365
    • /
    • 2020
  • Background: To evaluate the effectiveness of vibration as a counter-stimulatory measure in reducing subjective pain due to local anesthesia administration in children. Methods: Electronic databases (PubMed, Ovid SP, Cochrane Central Register of Controlled Trials) were searched until April 2020. Studies were screened by titles and abstracts, followed by full text evaluation of the included studies. Results: A total of seven studies involving 376 children aged 5-17 years were included in the systematic review and meta-analysis. The meta-analysis compared vibration as a counter-stimulatory measure with no vibration as a comparator. The primary outcome evaluated was pain perception or subjective pain reported by the child. The secondary outcome evaluated was objective pain evaluated in each study. The pooled mean difference favored vibration to be effective for the first outcome. Conclusion: Within the limits of this systematic review, low quality evidence suggests that vibration as a counter-stimulatory measure is effective in reducing the subjective pain reported by children during local anesthesia administration.

Stochastic vibration analysis of functionally graded beams using artificial neural networks

  • Trinh, Minh-Chien;Jun, Hyungmin
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.529-543
    • /
    • 2021
  • Inevitable source-uncertainties in geometry configuration, boundary condition, and material properties may deviate the structural dynamics from its expected responses. This paper aims to examine the influence of these uncertainties on the vibration of functionally graded beams. Finite element procedures are presented for Timoshenko beams and utilized to generate reliable datasets. A prerequisite to the uncertainty quantification of the beam vibration using Monte Carlo simulation is generating large datasets, that require executing the numerical procedure many times leading to high computational cost. Utilizing artificial neural networks to model beam vibration can be a good approach. Initially, the optimal network for each beam configuration can be determined based on numerical performance and probabilistic criteria. Instead of executing thousands of times of the finite element procedure in stochastic analysis, these optimal networks serve as good alternatives to which the convergence of the Monte Carlo simulation, and the sensitivity and probabilistic vibration characteristics of each beam exposed to randomness are investigated. The simple procedure presented here is efficient to quantify the uncertainty of different stochastic behaviors of composite structures.

Large amplitude free torsional vibration analysis of size-dependent circular nanobars using elliptic functions

  • Nazemnezhad, Reza;Rabiei, Mohaddese;Shafa'at, Pouyan;Eshaghi, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.77 no.4
    • /
    • pp.535-547
    • /
    • 2021
  • This paper concerns with free torsional vibration analysis of size dependent circular nanobars with von kármán type nonlinearity. Although review of the literature suggests several studies employing nonlocal elasticity theory to investigate linear torsional behavior, linear/nonlinear transverse vibration and buckling of the nanoscale structures, so far, no study on the nonlinear torsional behavior of the nanobars, considering the size effect, has been reported. This study employs nonlocal elasticity theory along with a variational approach to derive nonlinear equation of motion of the nanobar. Then, the nonlinear equation is solved using the elliptic functions to extract the natural frequencies of the structure under fixed-fixed and fixed-free end conditions. Finally, the natural frequencies of the nanobar under different nanobar lengths, diameters, nonlocal parameters, and amplitudes of vibration are reported to illustrate the effect of these parameters on the vibration characteristics of the nanobars. In addition, the phase plane diagrams of the nanobar for various cases are reported.

Finite element analysis for longitudinal vibration of nanorods based on doublet mechanics

  • Ufuk Gul;Metin Aydogdu
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.411-422
    • /
    • 2023
  • In the present study, the axial vibration of the nanorods is investigated in the framework of the doublet mechanics theory. The equations of motion and boundary conditions of nanorods are derived by applying the Hamilton principle. A finite element method is developed to obtain the vibration frequencies of nanorods for different boundary conditions. A two-noded higher order rod finite element is used to solve the vibration problem. The natural frequencies of nanorods obtained with the present finite element analysis are validated by comparing the results of classical doublet mechanics and nonlocal strain gradient theories. The effects of rod length, mode number and boundary conditions on the axial vibration frequencies of nanorods are examined in detail. Mode shapes of the nanorods are presented for the different boundary conditions. It is shown that the doublet mechanics model can be used for the dynamic analysis of nanotubes, and the presented finite element formulation can be used for mechanical problems of rods with unavailable analytical solutions. These new results can also be used as references for the future studies.

Vibration and Noise Control of the Simply Supported Slab Using the Multi-tuned Mass Damper (다중동조질량감쇠기를 이용한 단순지지 슬래브의 진동 및 소음저감에 관한 연구)

  • Hwang, Jae-Seung;Hong, Geon-Ho;Park, Hong-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1006-1013
    • /
    • 2008
  • In this study, it is outlined that heavy weight floor impact noise induced by the vibration of slab can be reduced using multi tuned mass damper(MTMD) effectively. Substructure synthesis is utilized to develope analytical model of the slab coupled with MTMD and acoustic power is introduced to evaluate the performance of noise control for simplicity. Numerical analysis is carried out to investigate the effect of the properties of MTMD on the vibration and noise control of the simply supported slab. Numerical analysis shows that mass ratio of MTMD is critical on the vibration and noise control of the slab and it is also essential to reduce the vibration in higher modes of slab in the light of its great effect on the radiation of sound.

Experimental Model Analysis of Double Floor (실험적 모드해석법에 의한 이중바닥구조의 동특성 해석)

  • 변근주;노병철;이헌주;이호범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.207-212
    • /
    • 1993
  • When constructing highly precise production plants, for example, super LSI plants or semiconductor plants, it is important to take the necessary control countermeasures into consideration to obtain the working microvibration environment, which is directly related to product precision. Working environment of a clean room means vibration-free and there are only ultra-miro vibration which human cannot sense. In order to provide an place having a vibration-free working environment with only ultra-micro vibration it is necessary to posses a great number of vibration isolation technlogies, wide-ranging and abundant survey and teat data, and a high level of knowledge enabling comprehensive judgments to be made. In this study, experimental modal analysis is used to analyze the dynamic characteristics of double floor for vibration-proofing near apparatus which generate vibration. It is concluded that the double floor system with rubber pad inserted between floor panel and pedestal is good for vibration proof.

  • PDF