• 제목/요약/키워드: Vibration Transmission characteristic

검색결과 58건 처리시간 0.033초

진동억제를 위한 자동추정 퍼지제어기 설계 (Design of Auto Tuning Fuzzy Controller for Vibration Suppression)

  • 박재형;김성대
    • 대한전자공학회논문지TE
    • /
    • 제39권2호
    • /
    • pp.118-123
    • /
    • 2002
  • 토크 전달시스템은 다수의 기어와 커플링이 유연하게 구성되어 있으므로, 모터의 속도가 갑자기 변할 때 비틀림 진동이 발생한다. 따라서 모터의 정확한 응답 특성을 얻기 위해서는 반드시 이 진동을 억제시켜야 한다. 이와 같이 진동억제는 모터제어에 있어서 매우 중요하다. 진동억제를 위해, 특히 2관성 시스템의 제어를 위해 다양한 제어방법들이 소개되었다. 토크의 비틀림 현상으로 인해 발생하는 진동을 억제하기 위해 토크의 비틀림 성분을 궤환시켜 외란 관측기 및 필터를 사용하여 진동을 억제하는 방법이 소개되었고, 이 방법은 CDM으로 적절한 비례 제어기와 필터의 계수 값을 설계하여 진동을 억제하는 방법이다. 그러나 CDM을 이용하여 설계된 제어기는 외란이 인가될 경우에 적응성이 떨어짐을 알 수 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위하여 퍼지를 사용하여 제어기의 파라메터 $K_P$를 자동적으로 추종하는 자동추정 퍼지제어기를 제안하고 이 제어기의 성능을 시뮬레이션을 통해 검증하였다.

Galloping characteristics of a 1000-kV UHV iced transmission line in the full range of wind attack angles

  • Lou, Wenjuan;Wu, Huihui;Wen, Zuopeng;Liang, Hongchao
    • Wind and Structures
    • /
    • 제34권2호
    • /
    • pp.173-183
    • /
    • 2022
  • The galloping of iced conductors has long been a severe threat to the safety of overhead transmission lines. Compared with normal transmission lines, the ultra-high-voltage (UHV) transmission lines are more prone to galloping, and the damage caused is more severe. To control the galloping of UHV lines, it is necessary to conduct a comprehensive analysis of galloping characteristics. In this paper, a large-span 1000-kV UHV transmission line in China is taken as a practical example where an 8-bundled conductor with D-shaped icing is adopted. Galerkin method is employed for the time history calculation. For the wind attack angle range of 0°~180°, the galloping amplitudes in vertical, horizontal, and torsional directions are calculated. Furthermore, the vibration frequencies and galloping shapes are analyzed for the most severe conditions. The results show that the wind at 0°~10° attack angles can induce large torsional displacement, and this range of attack angles is also most likely to occur in reality. The galloping with largest amplitudes in all three directions occurs at the attack angle of 170° where the incoming flow is at the non-iced side, due to the strong aerodynamic instability. In addition, with wind speed increasing, galloping modes with higher frequencies appear and make the galloping shape more complex, indicating strong nonlinear behavior. Based on the galloping amplitudes of three directions, the full range of wind attack angles are divided into five galloping regions of different severity levels. The results obtained can promote the understanding of galloping and provide a reference for the anti-galloping design of UHV transmission lines.

광섬유 격자 센서와 빔 커플러를 사용한 회전중인 블레이드의 변형률 측정 방법 (On-line Strain Measurement of Rotating Blade Using Fiber Bragg Grating Sensors and Beam Coupler)

  • 이인재;이종민;이상배;황요하
    • 한국소음진동공학회논문집
    • /
    • 제16권11호
    • /
    • pp.1172-1178
    • /
    • 2006
  • Measurement of blade strain with sensors directly installed on the blade has one critical issue, how to send the sensor signal to the ground. Strain-gauges have been dominantly used to directly measure stress of a blade and either a slip ring or a telemetry system has to be used to send measured signal to the ground. However, both systems have many inherent problems and sometimes very severe limitations to be practically used. In this paper, new on-line strain monitoring method using. FBG(Fiber Bragg Grating) sensors and a beam coupler is introduced. Measurement of rotor stress using FBG sensors is nothing new, but unlike other system which installs all necessary instruments on the rotor and use telemetry system to send data to the ground, this system makes use of light's unique characteristic - light travels through space. In this new approach, single optical fiber with many FBG sensors is installed on the blade and all other necessary instruments can be installed at ground thereby giving tremendous advantages over slip ring or telemetry system. A reference sensor is also introduced to compensate the beam coupler's transmission loss change due to rotation. The suggested system's good performance is demonstrated with experiments.

전통창호의 차음 특성에 관한 연구 (A study on the Sound Insulation Characteristics of Korean Traditional Windows)

  • 김항;이태강;김선우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.1147-1150
    • /
    • 2007
  • Korean traditional houses have been developed in sympathy with natural environment and formed comfortable indoor condition by properly using surrounding natural resources including building layout, space construction and material. Or traditional wooden windows adjusting ambient temperature and humidity have both the functions of window and door, although they are clearly divided in the West. While window paper is attached from the outside in China and Japan, it is attached from the inside in Korea. The opening and closing mode of windows is similar and their dimensions are shown not to be standardized but diverse in terms of the characteristic of wooden furniture and that of components placed between columns. Thus this study is to look into the performance of band-lattice door of a typical traditional one by observing changes in sound insulation characteristics according to difference in thickness and finishing method of window paper and those in sound insulation characteristics with the changed thickness of air layer in traditional windows and doors.

  • PDF

열가소성 플라스틱 흡기 터보차져호스의 설계 변수에 따른 차량 실내 소음에 미치는 영향에 관한 연구 (A study on influence of vehicle interior noise according to design parameters of thermoplastic turbo charger intake hose)

  • 진용선;윤지용;이춘수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.367-368
    • /
    • 2012
  • In resent years, engineering thermoplastics represent a means for designers to integrate parts, facilitate assembly, reduce weight and lower the costs of their parts to improve the fuel efficiency and competitiveness of the cars. Thermoplastic turbo charger intake hose is one of most sophisticated application in thermoplastics under the hood. Used as part of weight & cost reduction and performance improvement program, thermoplastic turbo charger intake hose has been developed as rubber and metal replacement. For optimized product, NVH performance is a important criteria while keeping same durability required with current system. Though a number of studies have been conducted on the resonator hose and its analytical models, the most of studies were focused on transmission loss itself. This paper presents contribution of vehicle interior noise according to design parameters like profile, bellows type, bellows position, material characteristic. And we will review the design guidance for optimized product of thermoplastic turbo charger intake hose.

  • PDF

타공사 감시를 위한 광섬유 가속도계의 개발 (Development of Fiber Optic Accelerometer for Third-Party Damage Detection)

  • 박호림;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1551-1558
    • /
    • 2001
  • Recently, a number of underground pipelines have been drastically increased. The integrity of these buried pipelines, especially gas transmitting pipelines, is of importance due to an explosive characteristic of natural gas. The third party damage is known as one of the most critical factor which causes fatal accidents. For this reason, a number of systems detecting third party damage are under development. The major concern in the development of third party damage detection system is to transmit vibration signals out of accelerometer to signal conditioner and data acquisition system without any interference caused by noise. The objective of this paper is to develope a fiber optic accelerometer applicable to third party damage detection system. A fiber optic accelerometer was developed by use of combining principles of one degree of freedom vibration model and an extrinsic Fabry-Perot interferometer. The developed fiber optic accelerometer was designed to perform with a sensitivity of 0.06mVg, a frequency range of less than 6kHz and an amplitude range of -200g to 200g. The developed, accelerometer was compared with a piezoelectric accelerometer and calibrated. In order to verify the developed accelerometer, the field experiment was performed. From the field experiment, vibration signals and the location of impact were successfully detected. The developed accelerometer is expected to be used for the third party damage detection system which requires long distance transmission of signals.

SEA에 기초를 둔 손실계수를 이용한 결합계수의 평가 (Coupling loss factor evaluation using loss factor based on the SEA)

  • 안병하;황선웅;김영종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.568-571
    • /
    • 1997
  • The overall aim of this paper is to determine coupling loss factor using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one directional power flow between two sub structures. Using these conditions, it is possible to find the coupling loss factor equation. The comparison between theory of power transmission on conjunction and above equation, show a good agreement in simple beam structure. To check the effectiveness of above equation, it was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure.

  • PDF

Sensor placement selection of SHM using tolerance domain and second order eigenvalue sensitivity

  • He, L.;Zhang, C.W.;Ou, J.P.
    • Smart Structures and Systems
    • /
    • 제2권2호
    • /
    • pp.189-208
    • /
    • 2006
  • Monitoring large-scale civil engineering structures such as offshore platforms and high-large buildings requires a large number of sensors of different types. Innovative sensor data information technologies are very extremely important for data transmission, storage and retrieval of large volume sensor data generated from large sensor networks. How to obtain the optimal sensor set and placement is more and more concerned by researchers in vibration-based SHM. In this paper, a method of determining the sensor location which aims to extract the dynamic parameter effectively is presented. The method selects the number and place of sensor being installed on or in structure by through the tolerance domain statistical inference algorithm combined with second order sensitivity technology. The method proposal first finds and determines the sub-set sensors from the theoretic measure point derived from analytical model by the statistical tolerance domain procedure under the principle of modal effective independence. The second step is to judge whether the sorted out measured point set has sensitive to the dynamic change of structure by utilizing second order characteristic value sensitivity analysis. A 76-high-building benchmark mode and an offshore platform structure sensor optimal selection are demonstrated and result shows that the method is available and feasible.

What Is the Key Vacuum Technology for OLED Manufacturing Process?

  • 백충렬
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.95-95
    • /
    • 2014
  • An OLED(Organic Light-Emitting Diode) device based on the emissive electroluminescent layer a film of organic materials. OLED is used for many electronic devices such as TV, mobile phones, handheld games consoles. ULVAC's mass production systems are indispensable to the manufacturing of OLED device. ULVAC is a manufacturer and worldwide supplier of equipment and vacuum systems for the OLED, LCD, Semiconductor, Electronics, Optical device and related high technology industries. The SMD Series are single-substrate sputtering systems for deposition of films such as metal films and TCO (Transparent Conductive Oxide) films. ULVAC has delivered a large number of these systems not only Organic Evaporating systems but also LTPS CVD systems. The most important technology of thin-film encapsulation (TFE) is preventing moisture($H_2O$) and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass substrate, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This report provides a review of promising thin-film barrier technologies as well as the WVTR(Water Vapor Transmission Rate) properties. Multilayer thin-film deposition technology of organic and inorganic layer is very effective method for increasing barrier performance of OLED device. Gases and water in the organic evaporating system is having a strong influence as impurities to OLED device. CRYO pump is one of the very useful vacuum components to reduce above impurities. There for CRYO pump is faster than conventional TMP exhaust velocity of gases and water. So, we suggest new method to make a good vacuum condition which is CRYO Trap addition on OLED evaporator. Alignment accuracy is one of the key technologies to perform high resolution OLED device. In order to reduce vibration characteristic of CRYO pump, ULVAC has developed low vibration CRYO pumps to achieve high resolution alignment performance between Metal mask and substrate. This report also includes ULVAC's approach for these issues.

  • PDF

전자 트랜스듀서 방식에 의한 청각보조용 이식형 인공중이 시스템 설계 (Design of Implantable Middle Ear Hearing Aids Using an Electromagnetic Transducer)

  • 조진호;송병섭;김명남;원철호;박세광;이상흔
    • 센서학회지
    • /
    • 제6권6호
    • /
    • pp.466-475
    • /
    • 1997
  • 본 논문에서는 초소형 코일-마그넷으로 구성되는 전자 트랜스듀서를 이용하는 청각보조용 이식형 인공중이를 설계하였다. 세라믹 방식의 진동체에 비하여 음향특성은 우수하나 효율이 낮은 것이 문제점으로 지적되고 있는 전자 트랜스듀서 방식의 진동체를 효과적으로 구현하기 위하여 객관화된 진동체의 설계방안을 제시하였으며 시스템의 전력 전달 효율을 향상시킬 수 있도록 FM방식의 음성신호 전달용 체외기와 체내기를 설계하였다. 설계된 트랜스듀서 및 체외기와 체내기의 실험세트를 만들어 금속스트립 및 사체의 측두골을 대상으로 진동특성을 측정하였다. 그 결과 FM방식의 신호전달기법이 갖는 장점을 확인할 수 있었으며 증폭된 입력 음압에 해당하는 진동을 효과적으로 이소골에 전달할 수 있음을 보였다.

  • PDF