• Title/Summary/Keyword: Vibration Table

Search Result 340, Processing Time 0.03 seconds

Modeling and Dynamic Analysis of Electro-mechanical System in Machine Tools(2$^{nd}$ Report) - Modeling and Dynamic Analysis of Feed Drive System - (공작기계 시스템의 모델링과 동적특성 분석 (제2보) - 이송계의 모델링과 동적특성 분석 -)

  • Park, Yong-Hwan;Shin, Heung-Chul;Moon, Hee-Sung;Choe, Song-Yul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.218-224
    • /
    • 1999
  • In the feed drive systems of machine tools that consist of many mechanical components such as motor, coupling, ballscrew, nut or table, a torsional vibration is often generated because of its elastic elements in torque transmission. Generally, the accuracy of motion control system is strongly influenced by the dynamic behavior of coupled transmission components. Especially, a torsional vibration caused by the elasticity of mechanical elements might deteriorate the quick movement of system and lead to shorten the life time of the mechanical transmission elements. So, it is necessary to analyze the electromechanical system mathematically to optimize the dynamic characteristics of the feed system. In this paper, the mathematical model of a feed drive system was developed and its mechanical characteristics were analyzed on the basis of the proposed model. The design concepts of speed control loop to stabilize a feed drive system were also proposed.

  • PDF

Sound Quality Evaluation and Grade Construction of the Level D Noise for the Vehicle Using MTS (MTS기법을 이용한 차량 D단 소음의 음질 평가 및 음질 등급화 구축)

  • Park, Sang-Gil;Park, Won-Sik;Sim, Hyoun-Jin;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.393-399
    • /
    • 2008
  • The reduction of the Vehicle interior noise has been the main interest of NVH engineers. The driver's perception on the vehicle noise is affected largely by psychoacoustic characteristic of the noise as well as the SPL. The previous methods to evaluation of the SQ about vehicle interior noise are linear regression analysis of subjective SQ metrics by statistics and the estimation of the subjective SQ values by neural network. But these are so depended on jury test very much that they result in many difficulties. So, to reduce jury test weight, we suggested a new method using Mahalanobis distance for SQ evaluation. And, optimal characteristic values influenced on the result of the SQ evaluation were derived by signal to noise ratio(SN ratio) of the Taguchi method. Finally, the new method to evaluate SQ is constructed using Mahalanobis-Taguchi system(MTS). Furthermore, the MTS method for SQ evaluation was compared by the result of SQ grade table at the previous study and their virtues and faults introduced.

OPTIMAL SHAPE DESIGN OF THE FRONT WHEEL LOWER CONTROL ARM CONSIDERING DYNAMIC EFFECTS

  • Kang, B.J.;Sin, H.C.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.309-317
    • /
    • 2007
  • In this study, we conducted a vibration fatigue analysis of the lower control arm in a vehicle suspension system. The vehicle was driven during the tests so that the dynamic effects could be taken into account. The dynamic load of the frequency domain was superimposed on the frequency response analysis. We performed a virtual proving ground test using multi-body dynamics, along with a finite element analysis and fatigue life predictions. Shape optimization was also considered using the design of the experimental approach, and a response surface analysis was performed to improve the durability performance of the lower control arm. We identified the elements that had the most influence on the optimal shape of the finite element model and analyzed the sensitivity of those elements. Then the optimal points that minimized the amount of damage to the areas of interest were determined through a response surface analysis. The results suggested that the fatigue life of the model increased as its mass was not increased excessively, and demonstrated that these design procedures yielded an appropriate optimized lower control arm model.

Testing of tuned liquid damper with screens and development of equivalent TMD model

  • Tait, M.J.;El Damatty, A.A.;Isyumov, N.
    • Wind and Structures
    • /
    • v.7 no.4
    • /
    • pp.215-234
    • /
    • 2004
  • The tuned liquid damper (TLD) is increasingly being used as an economical and effective vibration absorber. It consists of a water tank having the fundamental sloshing fluid frequency tuned to the natural frequency of the structure. In order to perform efficiently, the TLD must possess a certain amount of inherent damping. This can be achieved by placing screens inside the tank. The current study experimentally investigates the behaviour of a TLD equipped with damping screens. A series of shake table tests are conducted in order to assess the effect of the screens on the free surface motion, the base shear forces and the amount of energy dissipated. The variation of these parameters with the level of excitation is also studied. Finally, an amplitude dependent equivalent tuned mass damper (TMD), representing the TLD, is determined based on the experimental results. The dynamic characteristics of this equivalent TMD, in terms of mass, stiffness and damping parameters are determined by energy equivalence. The above parameters are expressed in terms of the base excitation amplitude. The parameters are compared to those obtained using linear small amplitude wave theory. The validity of this nonlinear model is examined in the companion paper.

Design of Active Magnetic Bearing System for Moving Vehicles (이동 차량 탑재용 전자기 베어링 시스템 설계)

  • Kim, Ha-Yong;Sim, Hyun-Sik;Lee, Chong-Won;Kang, Tae-Ha
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.364-370
    • /
    • 2005
  • The active magnetic bearing (AMB) systems mounted in moving vehicles are exposed to the disturbances due to the base motion, often leading to malfunction or damage as well as inaccurate positioning of the systems. Thus, in the controller design of such AMB systems, robustness to base disturbances becomes an essential requirement. In this study, effective control schemes are proposed for the homo-polar AMB system, which uses permanent magnets for generation of bias magnetic flux, when it is subject to base motion, and its control performance is experimentally evaluated. The base motion of AMB system is modeled as the dynamic disturbances in the gravity and base excitation forces. To effectively compensate for the disturbances, the angle feed-forward controller based on the inverse dynamic model and the acceleration feed-forward controller based on the normalized filtered-X LMS algorithm are proposed. The performance test of the prototype AMB system is carried out, when the system is mounted on rate table. The experimental results show that the performance of the proposed controllers for the AMB system is satisfactory in compensating for the disturbances due to the base motion.

System Identification and Controller Design of a Small-scale Building Structure using Matlab (Matlab을 이용한 축소 모형건물의 시스템 식별과 제어기 설계)

  • Min, Kyung-Won;Kim, Sung-Choon;Hwang, Seong-Ho;Ho, Kyoung-Chan;Joung, Jin-Wook;Joo, Soek-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.978-983
    • /
    • 2000
  • This paper presents the system identification of a small-scale building model with an active mass driver and the controller design using Matlab program. As the AMD is a mechanical system which has a dynamic characteristic and whose mass can not be neglected compared to that of the building mass, the AMD-building interaction should be included in the controller design. The system identification is carried out for the AMD-building system with two acceleration inputs of the shaking table and the AMD and single acceleration output of the building. The mathematical model for the AMD-building is obtained and compared with the experimental result. The controller is designed based on the mathematical model using the optimal control algorithm of LQG strategy. The experimental results are compared with the numerical results. It is shown that both results are in good agreement in the system identification and the controlled responses.

  • PDF

Seismic Performance Evaluation of 500 kV EBA (500 kV 기중종단접속함의 내진성능평가)

  • Jeon, Bub-Gyu;Jung, Chi-Young;Jin, Jung-Woon;Kim, Han-Hwa;Cheung, Jin-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.7
    • /
    • pp.496-502
    • /
    • 2015
  • In this study, seismic performance tests for 500 kV EBA are conducted through the IEEE Std. 693. It is hard to conduct both the static tests and dynamic tests for 500 kV EBA as IEEE Std. 693 because the size of specimen, 9 m in height, is too large to be examined. To do so, it can cause the unnecessary time and cost, and also the damage on the specimen. However, in this study, both static tests and dynamic tests are conducted in the same test field as IEEE Std. 693 to achieve more accurate and reliable test results. From the test results Taihan Electric Wire Co. can win contract for 500 kV extra-high voltage project in the U.S.A., therefore it can be evaluated that the tests are conducted successfully and the capability to estimate large electric power facilities are achieved as IEEE Std. 693.

Experimental Study on the Probability-based Equivalent Linearization of a Friction Damper-Brace System (마찰감쇠기-가새 시스템의 확률분포 기반 등가선형화에 관한 실험적 연구)

  • Kang, Kyung-Soo;Park, Ji-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.394-403
    • /
    • 2006
  • A new equivalent linearization technique is proposed for a friction damper-brace system (FDBS) idealized as a elastoplastic system. The equivalent linearization technique utilizes secant stiffness and dissipated energy defined by the probability distribution of the extremal displacement of the FDBS. In addition, a conversion scheme is proposed so that an equivalent linear system is designed first and converted to the FDBS. For comparative study, an existing model update technique based on system identification is modified in a form appropriate to update single element. For the purpose of verification, shaking table tests of a small scale three-story shear building model, in which a rotational FDBS is installed, are conducted and equivalent linear systems are obtained using the proposed technique and the model update technique. Complex eigenvalue analysis is conducted for those equivalent linear systems, and the natural frequencies and modal damping ratios are compared with those obtained from system identification. Additionally, RMS and peak responses obtained from time history analysis of the equivalent linear systems are compared with measured ones.

Density Variation within Specimen as Affected by Vibration (진동으로 인한 모래 공시체내의 밀도변화에 관한 연구)

  • 장병욱
    • Geotechnical Engineering
    • /
    • v.3 no.3
    • /
    • pp.7-20
    • /
    • 1987
  • To obtain meaningful data of the tests for cyclic loading triaxial test, cyclic loading simple shear test ; and Shake table studies, it is necessary to test uniformly densified specimens. However, there is still some question about the assumed uniform density within a specimen when subjected to the process of densification. A study is conducted to investigate the density variation It within the specimen and analyze the effect of various parameters during the process of vibratory densification. It is found that variation of the ideally graded sand having a homogeneous initial density results in large inhomogeneities within the specimen after vibration. The degree of density variation within the speimen becomes more pronounced by the gradation of sand, surcharge and the intensity of acceleration.

  • PDF

A statistical framework with stiffness proportional damage sensitive features for structural health monitoring

  • Balsamo, Luciana;Mukhopadhyay, Suparno;Betti, Raimondo
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.699-715
    • /
    • 2015
  • A modal parameter based damage sensitive feature (DSF) is defined to mimic the relative change in any diagonal element of the stiffness matrix of a model of a structure. The damage assessment is performed in a statistical pattern recognition framework using empirical complementary cumulative distribution functions (ECCDFs) of the DSFs extracted from measured operational vibration response data. Methods are discussed to perform probabilistic structural health assessment with respect to the following questions: (a) "Is there a change in the current state of the structure compared to the baseline state?", (b) "Does the change indicate a localized stiffness reduction or increase?", with the latter representing a situation of retrofitting operations, and (c) "What is the severity of the change in a probabilistic sense?". To identify a range of normal structural variations due to environmental and operational conditions, lower and upper bound ECCDFs are used to define the baseline structural state. Such an approach attempts to decouple "non-damage" related variations from damage induced changes, and account for the unknown environmental/operational conditions of the current state. The damage assessment procedure is discussed using numerical simulations of ambient vibration testing of a bridge deck system, as well as shake table experimental data from a 4-story steel frame.