• Title/Summary/Keyword: Vibration Parameters

Search Result 2,630, Processing Time 0.029 seconds

Evaluation of idle vibration beated by cooling fan imbalance (팬 작동에 따른 비팅성 아이들 진동 평가)

  • Park, Jinhan;Ahn, Sejin;Jeong, Weuibong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.247-249
    • /
    • 2014
  • The beating phenomenon occurs because of various causes, when idle vibration was happened. In this study, the beating phenomenon was divided into several parameters and controlled by the parameter. It was hypothesized that the beating parameter is related to discomfort of idle vibration. The three-down one-up method was performed for evaluating discomfort of controlled vibrations, which is widely used in the field of psychophysics. As a result in pilot test, a subject responds beating vibration more discomfort than normal idle vibration. In the future, the study will be implemented to know how much the parameters of beating signal affect to the discomfort at idle vibration in passenger vehicle.

  • PDF

Modeling for vibration analysis of a drum washing machine using axiomatic design (공리적 설계를 이용한 드럼 세탁기의 진동 해석 모델링)

  • Kim S.H.;Choi D.H.;Hwang W.B.;Kim Y.S.;Jung B.S.;Kang D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.561-564
    • /
    • 2005
  • The quality of a rotating body such as a washing machine depends on the vibration characteristics. So, the researches to reduce the vibration of a washing machine are actively performing, but it is very difficult to conduct these experiments because there are many design parameters affecting the vibration behavior. Accordingly, in this study it was complete to build a modeling of a drum washing mashing to analyze and predict vibration behaviors. The design parameters which affect the vibration were found, and the method for the systematic analysis of the design parameters was suggested using axiomatic design. In the previous study, the effect of the gasket has not considered on vibration behaviors, but in this study it was considered. The simulation results showed good agreements with the experimental results in the vibration displacement and the vibration tendency of a drum washing machine.

  • PDF

Comparison of vibration and Noise Characteristics for Reciprocating Air Compressor through the Change of Crankshaft Parameters (크랭크샤프트의 형상 변경을 통한 소형 왕복동 공기압축기의 진동 및 소음 특성 비교)

  • Park, Sang-Gil;Lee, Hae-Jin;Aminudin, Bin Abu;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.530-533
    • /
    • 2005
  • Recently, modern reciprocating air compressors tend to be smaller and lighter. But, as the development of performance, they have many problems for noise and vibration. For this reason, many researches are processing for the reduction of noise and vibration by arranging cylinders with V/W type. Especially, noise and vibration problems of reciprocating air compressor cause a rotating unbalance of crankshaft, so it needs a change of crankshaft parameters appropriately. Hence in this study, we changed crankshaft parameters to solve the rotating unbalance and compared results in order to verify the noise and vibration reduction between new and original air compressor. According to modify a crankshaft parameter, the improvements of noise and vibration were showed results of spectrum measured at selected points of the air compressor crankshaft housing and sound intensity contours measured at a belt left side, table that figure out characteristics of noise. Furthermore, we analyzed objective sound quality metrics with recording data of systems. The results showed that, the new design has improved the level of the first harmonic of vibration displacement, noise and objective sound quality metrics.

  • PDF

Determination of Vibration Parameters Using The Improved Time Domain Modal Identification Algorithm (개선된 시간영역 해석기법에 의한 동특성 추정)

  • Jung, Beom-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.147-154
    • /
    • 1999
  • A new approach to conducting the vibration parameters identification algorithm is proposed. The approach employs the concept of modal amplitude ratio implemented in a mode shape estimation. The accuracy of the improved Ibrahim Time Domain identification algorithm in extracting structural modal parameters from free response functions has been studied using computer simulated data for 9 stations on the two-span continuous beam. Simulated responses from the lumped and distributed parameter system demonstrate that this algorithm produces excellent results, even in the 300% noise response.

  • PDF

The Study on the Influence Analysis of Shimmy&Shake due to Tire Design Parameters (타이어 설계인자별 Shimmy&Shake 영향도 분석에 관한 연구)

  • Bae, Chul-Yong;Kwon, Seong-Jin;Kim, Chan-Jung;Lee, Bong-Hyun;Koo, Byoung-Kook;Rho, Guck-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.415-420
    • /
    • 2007
  • The objective of this study analyzes the influence of shimmy & shake phenomena due to tire design parameters which are RFV(radial force variation), DB(dynamic balance), RRO(radial run out) and air pressure. These parameters are inspection items for Q.C. after tires are manufactured. In order to analyze these parameters on this study, vehicle driving tests were achieved. The test modes are two type which are constant speed and coast-down driving. On this tests the dynamic characteristics of shimmy & shake are measured by the 3-axises accelerometers at the various positions that are knuckle(left & right), rack pinion, seat and steering wheel. In according to analyzed results, the longitudinal vibration of knuckle parts affects the lateral vibration of rack pinion and this vibration affects the lateral vibration of steering wheel that is the shimmy phenomena. Also the over and under DB by comparison with normal DB and the increment of RRO affect the occurrence of shimmy & shake phenomena.

  • PDF

Effect of excitation type on dynamic system parameters of a reinforced concrete bridge

  • Wahab, M.M. Abdel;De Roeck, G.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.4
    • /
    • pp.387-400
    • /
    • 1999
  • Damage detection in civil engineering structures using the change in dynamic system parameters has gained a lot of scientific interest during the last decade. By repeating a dynamic test on a structure after a certain time of use, the change in modal parameters can be used to quantify and qualify damages. To be able to use the modal parameters confidentially for damage evaluation, the effect of other parameters such as excitation type, ambient conditions,... should be considered. In this paper, the influence of excitation type on the dynamic system parameters of a highway prestressed concrete bridge is investigated. The bridge, B13, lies between the villages Vilvoorde and Melsbroek and crosses the highway E19 between Brussels and Antwerpen in Belgium. A drop weight and ambient vibration are used to excite the bridge and the response at selected points is recorded. A finite element model is constructed to support and verify the dynamic measurements. It is found that the difference between the natural frequencies measured using impact weight and ambient vibration is in general less than 1%.

Free vibration analysis of plates resting on elastic foundations using modified Vlasov model

  • Ayvaz, Yusuf;Oguzhan, Celal Burak
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.635-658
    • /
    • 2008
  • An application is presented of a modified Vlasov model to the free vibration analysis of plates resting on elastic foundations. The effects of the subsoil depth, the ratio of the plate dimensions, the ratio of the subsoil depth to the plate dimension in the longer direction, and the value of the vertical deformation parameter within the subsoil on the frequency parameters of plates on an elastic foundation are investigated. This analysis has been caried out by the aid of a computer program. The first ten frequency parameters are presented in tabular and the graphical forms to evaluate the effects of the parameters considered in this study. Then mode shapes corresponding to the first six of the frequency parameters are given in graphs. It is concluded that the effect of the subsoil depth on the frequency parameters of the plates on an elastic foundation is generally larger than those of the other parameters considered in this study.

A Study on the Effects of Dynamic Vibration Absorber for Driveline with Propeller Shaft Supported by Center Bearing (센터 베어링으로 지지된 추진축을 갖는 구동계에서의 진동흡진기의 영향에 대한 연구)

  • 강영춘;임재환;정호일;이규령;이창노;임홍재
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.925-930
    • /
    • 2004
  • This paper is to study vibration effects of the dynamic vibration absorber. Multi-body dynamic analysis is carried out for the vehicle driveline model using ADAMS with flexible propeller shaft attached with the vibration damper. Primary bending mode frequency of the propeller shaft is obtained from the simulation and coincides with the experimental result. Various design parameters are studied in dynamic simulation operated by the engine torque input. This paper identifies the responses of dynamic vibration absorbers in the driveline with propeller shaft, which will be used to find out optimal design parameters.

  • PDF

Structure Design Optimization of Small Class Forklift for Idle Vibration Reduction (소형 지게차의 Idle 진동 저감을 위한 차체 구조 최적 설계)

  • Lee, Wontae;Kim, Younghyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.660-664
    • /
    • 2014
  • A diesel forklift truck under 3-ton class has disadvantages in the vibration transmission path. Because the weight ratio of body structure to powertrain which is source of excitation force is lower th an a mid-class forklift. In addition, the torsional and bending vibration mode frequencies of body structure are within the engine excitation frequency range, then high idle vibration generated by resonance. In this paper vehicle body structure design and optimization technique considering idle vibration reduction are presented. Design sensitivity analysis is applied to search the sensitive of design parameters in body structure. The design parameters such as thickness and pillar cross section were optimized to increase the torsional and bending vibration mode frequencies.

  • PDF