• Title/Summary/Keyword: Vibration Motor

Search Result 1,348, Processing Time 0.082 seconds

Characteristics Analysis and Comparison of Careless and Slotless BLDC Motor used in Digital Lightening Processor Motor with Air-Dynamic Bearing (공기 동압 베어링을 갖는 디지털 라이트닝 프로세서 모터용 코어리스 및 슬롯리스 BLDC 모터의 특성 분석 및 비교)

  • Yang, Iee-Woo;Kim, Young-Seok;Kim, Sang-Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1039-1046
    • /
    • 2007
  • This paper presents the analysis for power consumption, mechanical vibration and acoustic noise characteristics of the Coreless and Slotless Brushless DC motor in Digital Lightening Processor(DLP) Motor with the Air-Dynamic Bearing. The Coreless BLDC motor has not the stator yoke as well as the stator slot to remove the unbalance force by the interaction between the stator yoke and Air-Dynamic Bearing clearance. The assembling tolerance and the processing error make the air-gap difference between the magnet and the stator yoke .which occurs the unbalanced electro-magnetic force in the Slotless BLDC motor. It imposes the air-dynamic bearing on the disturbance force and makes the Air-Dynamic Bearing vibrated and noised. Also, The attractive force between the magnet and the silicon steel stator yoke increases the power consumption. In this paper, the power consumption, mechanical vibration and acoustic noise of the Coreless BLDC motor and the Slotless BLDC motor with the silicon steel stator yoke are simulated, analyzed, and tested using the manufactured proto-type motors with Air-Dynamic bearing. The simulated and tested results present that the Coreless BLDC motor without the silicon steel stator yoke has the lower mechanical vibration and noise ,and lower power consumption than the Slotless BLDC motor with the silicon steel stator yoke in Digital Lightening Processor Motor with Air-Dynamic Bearing.

A Vibration Control of the Motor and the Pump by Avoiding Resonance (공진회피에 의한 모터와 펌프의 진동제어)

  • 김희원;주원호;정균양
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.148-153
    • /
    • 1998
  • A resonance is the one of major reasons of vibration problems occurred in industrial fields. To reduce vibration level due to resonance, structure reinforcements or change of the dynamic characteristics is generally applied. In this paper, the troublesome vibration levels of the motor shaft and auxiliary condensate pump are reduced by avoiding resonance.

  • PDF

The Development of Evaluation Process for Dynamic Characteristics of Door Module (자동차용 모듈화 도어의 동특성 평가 시험법 개발)

  • Bae, Chul-Yong;Kim, Chan-Jung;Kwon, Seong-Jin;Lee, Bong-Hyun;Jang, Woon-Sung;Lee, Joon-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.291-296
    • /
    • 2007
  • This study presents the evaluation process for door module. Its objective evades the resonance generated at module plate due to the operation of window regulator motor. For this study, the design improvement process is composed of experimental methods having three steps. First step is modal analysis at door assembly status for acquisition of dynamic characteristics which are modal frequency and damping. Second step is a vibration experiment to get the test mode considered an efficiency of window regulator motor. Last step is a vibration measurement by the form of $6{\times}6$ array on module plate. A vibration measurement of 6x6 array form can be got to three analysis results which are a transfer path of vibration using cross correlation function, a vibration map using OA level and a contribution by frequency band using coherent output power spectrum on module plate. These results are applied to SDM(structural dynamic modification) for design improvement to get around the resonance on module plate by the excitation of window regulator motor.

  • PDF

The Vibration Characteristic Analysis by Mode Variation of Ring Type Ultrasonic Motor (링형 초음파모터의 모드선정에 따른 진동특성 해석)

  • 윤신용;백수현;김현일
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.5
    • /
    • pp.309-317
    • /
    • 2004
  • This paper suggested the vibration characteristic improvement by variation mode of ring type ultrasonic motor. Design for the piezoelectric ceramic and elastic body of stator were calculated by the finite element method(FEM) that consider the resonance frequency, vibration mode and coupling efficiency etc. Through the result of vibration analysis from 6 order mode to 8 mode, the 7 order mode was gained very an excellent results that it was the coupling efficient, minimum power loss and bending vibration value. Here over 7 order mode, this paper was acquired that an output current for input voltage was very a large increased results. The result of vibration calculation, from thickness 0.5[mm] to 2[mm], knew the fact that the vibration displacement at 0.5[mm] is an high value too. From such result, this paper was manufactured the ultrasonic motor of outer diameter 5O[mm] , inter 22[mm] having the about 43.86[KHz] resonance frequency. We have gated that a simulation result is 42.2[KHz] and an experiment result is 43.86[KHzl The propriety of this paper was established though comparison. investigation of simulation and experiment result.

A Study on the Dynamic Characteristics of Door Module for Vehicle (자동차용 모듈화 도어의 동특성 분석에 관한 연구)

  • Bae, Chul-Yong;Kim, Chan-Jung;Kwon, Seong-Jin;Lee, Bong-Hyun;Jang, Woon-Sung;Lee, Joon-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1093-1101
    • /
    • 2007
  • This study presents the design improvement process for door module. Its objective evades the resonance generated at module plate due to the operation of window regulator motor. For this study, the design improvement process is composed of experimental methods having three steps. First step is modal analysis at door assembly status for acquisition of dynamic characteristics which are modal frequency and damping. Second step is a vibration experiment to get the test mode considered an efficiency of window regulator motor. Last step is a vibration measurement by the form of $6{\times}6$ array on module plate. A vibration measurement of $6{\times}6$ array form can be got to three analysis results which are a transfer path of vibration using cross correlation function, a vibration map using OA level and a contribution by frequency band using coherent output power spectrum on module plate. These results are applied to SDM(structural dynamic modification) for design improvement to get around the resonance on module plate by the excitation of window regulator motor.

A Study of Interior Noise Reduction through In-Vehicle Measurement Test to the Windshield Wiper Motor System (차량용 윈드쉴드 와이퍼 모터의 단품 및 실차시험을 통한 소음 저감 연구)

  • 최창환;임상규
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.862-869
    • /
    • 1998
  • The interior noise generated by the windshield wiper system including a wiper motor, the motor mountings and linkages is considered as a structure-borne noise. The structureborne noise is closely related with the system vibration which was transmitted into interior cabin through the car body. In this study, the frequency characteristics of vibration in the wiper motor system were first identified through the frequency analysis. Then effects of the wiper motor mountings and linkages on the vehicle interior noise were studied through in-vehicle measurements. Finally a possibility of noise reduction at a certain frequency was revealed from the study.

  • PDF

The Stator Analysis and Design of Ring Type Ultrasonic Motor (링형 초음파모터의 고정자 해석 및 설계)

  • Yoon, Shin-Yong;Baek, Soo-Hyun;Kim, Yong;Kim, Cherl-Jin;Kim, Hyun-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.10
    • /
    • pp.484-490
    • /
    • 2003
  • This paper describes with the stator analysis and design of a ring type ultrasonic motor. The design for piezoelectric ceramic and elastic body of stator were calculated by using the finite element method (FEM) that consider the resonance frequency, vibration mode and coupling efficiency. Namely, such results were acquired the calculation result of the piezoelectric ceramic thickness 0.5[mm], elastic body thickness 2.0[mm], resonance frequency 51.8[kHz], vibration mode 7 order and coupling efficient 12.5[%], the outer and inner diameter of vibrator 50[mm], 38[m]. On the basis of such result, the ring type ultrasonic motor was manufactured. Also for driving characteristics of ring type ultrasonic motor, 2-phase inverter was constructed. Then the propriety of this paper was established from comparision of the simulation and an experiment results of the ring type ultrasonic motor.

Dynamic Behavior Analysis of an Eccentric Rotor with Unbalanced Magnetic Forces in BLDC Motors (BLDC 전동기의 전자기적 불평형력을 고려한 편심 회전자의 동적 거동 해석)

  • Kim, Tae-Jong;Hwang, Sang-Mun;Park, No-Gil
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.604-610
    • /
    • 1999
  • Vibration of a rotor-bearing system driven by an electric motor is a coupled phenomenon between mechanical characteristics and magnetic origins through the air-gap. With the advent of new high-energy magnets together with high precision motor applications, magnetic sources of vibration are becoming more serious. This paper investigates the transient whirl responses of a rotor system with purely mechanical origins and compares it with that of magnetically coupled origins. A perturbation method is applied to model the magnetic field associated with rotor eccentricity. Electromagnetic forces are obtained by the Maxwell stress method, which utilizes the analytical expression of radial flux density distribution. The FEM was applied to a rotor-motor system to illustrate magnetically coupled effects in rotor dynamics. Results show that magnetically coupled sources significantly affect the vibration of the rotor-motor system.

  • PDF

Prediction of Dynamic Characteristics of Small DC Motor (소형 직류 모터의 동특성 예측)

  • Kim, Kug-Weon;Ahn, Tae-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.107-112
    • /
    • 2006
  • In this paper, described is a research on the modal analysis of small DC motor by finite element method fer the vibration reduction. An impact test is performed to obtain the natural frequencies and modal shapes of DC motor, which valuate the usefulness of the finite element analysis model. From the study, we show that this finite element analysis model can be applicable for designing a new motor with improvement in vibration characteristics. As an example, a shape modification of DC motor is performed and its vibration characteristics is discussed in comparison with those of original shape.

  • PDF

High-Reliable Classification of Multiple Induction Motor Faults Using Vibration Signatures based on an EM Algorithm (EM 알고리즘 기반 강인한 진동 특징을 이용한 고 신뢰성 유도 전동기 다중 결함 분류)

  • Jang, Won-Chul;Kang, Myeongsu;Choi, Byeong-Keun;Kim, Jong-Myon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.346-353
    • /
    • 2013
  • Industrial processes need to be monitored in real-time based on the input-output data observed during their operation. Abnormalities in an induction motor should be detected early in order to avoid costly breakdowns. To early identify induction motor faults, this paper effectively estimates spectral envelopes of each induction motor fault by utilizing a linear prediction coding (LPC) analysis technique and an expectation maximization (EM) algorithm. Moreover, this paper classifies induction motor faults into their corresponding categories by calculating Mahalanobis distance using the estimated spectral envelopes and finding the minimum distance. Experimental results shows that the proposed approach yields higher classification accuracies than the state-of-the-art approach for both noiseless and noisy environments for identifying the induction motor faults.

  • PDF