• Title/Summary/Keyword: Vibration Monitoring

Search Result 1,040, Processing Time 0.027 seconds

Vibration Monitoring of a 1kW Small Wind Turbine Generator (1kW소형 풍력발전기의 진동 모니터링)

  • Kim, Seock-Hyun;Nam, Y.S.;Yoo, N.S.;Kim, Yun-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.308-311
    • /
    • 2006
  • A vibration monitoring is performed on a 1kW class stand alone wind turbine(W/T). When a W/T model is developed, general performance under various wind condition should be verified to introduce the product in the market. Especially, vibration characteristics within operating speed range are very important in the aspect of structural stability as well as generator's electrical efficiency. This paper examines the vibration performance of a home made 1kW W/T Various data of the W/T model are acquired in real time using a remote vibration monitoring system installed in Daekwanryung test site. Vibration stability of the W/T structure is diagnosed based upon the data and the result is used to estimate the applicability of the W/T model.

  • PDF

Fiber Optic Sensor Design for the Monitoring of Structural Sound and Vibration (구조물 음향진동 모니터링을 위한 광섬유 센서 설계)

  • Lee, Jong-Kil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.81-84
    • /
    • 2007
  • In this paper, fiber optic sound and vibration monitoring sensor which is latticed shape structure based on Sagnac interferometer is fabricated and tested in laboratory conditions. To detect external vibrations surface mounted fibers on the latticed steel wire fence with a dimension of 170cm by 180cm is used. To detect external sound frequency the tightened fiber optic itself wire netting fence with a dimension of 50cm by 50cm is used. Experiments for the detection of the excited vibration and sound signals were performed. A small vibrator induced external vibration signal and it is applied to the latticed structure in the range of 100Hz to several kHz. External sound signal applied to the fiber optic sensor net using non-directional sound speaker. The detected optical signals were compared and analyzed to the detected both accelerometer and microphone signals in the time and frequency domain. Based on the experimental results, distributed fiber optic sensor using Sagnac interferometer detected effectively external vibration and sound signal and had a good performance. This system can be expanded to the monitoring of a significant system and to the structural health monitoring system.

  • PDF

Study on Process Monitoring of Elliptical Vibration Cutting by Utilizing Internal Data in Ultrasonic Elliptical Vibration Device

  • Jung, Hongjin;Hayasaka, Takehiro;Shamoto, Eiji
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.571-581
    • /
    • 2018
  • In the present study, monitoring of elliptical vibration cutting process by utilizing internal data in the ultrasonic elliptical vibration device without external sensors such as a dynamometer and displacement sensor is investigated. The internal data utilized here is the change of excitation frequency, i.e. resonant frequency of the device, voltages applied to the piezoelectric actuators composing the device, and electric currents flowing through the actuators. These internal data change automatically in the elliptical vibration control system in order to keep a constant elliptical vibration against the change of the cutting process. Correlativity between the process and the internal data is described by using a vibration model of ultrasonic elliptical vibration cutting and verified by several experiments, i.e. planing and mirror surface finishing of hardened die steel carried out with single crystalline diamond tools. As a result, it is proved that it is possible to estimate the elements of elliptical vibration cutting process, e.g. tool wear and machining load, which are important for stable cutting in such precision machining.

Vibration Monitoring and Analysis of a 6kW Wind Stand Alone Turbine Generator (6kW 독립형 풍력발전기의 진동 모니터링 및 분석)

  • Kim, Seock-Hyun;Nam, Yoon-Su;Yoo, Neung-Soo;Lee, Jeong-Wan;Park, Mu-Yeol;Park, Hae-Gyun;Kim, Tae-Hyeong
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.81-86
    • /
    • 2005
  • A vibration monitoring system for a small class of wind turbine (W/T) is established and operated. The monitoring system consists of monolithic integrated chip accelerometer for vibration monitoring, anemometers for wind data acquisition and auxiliary sensors for atmospheric data. Using the monitoring system, vibration response of a 6kW W/T generator is investigated. Acceleration data of the W/T tower under various operation condition is acquired in real time using LabVIEW and is remotely transferred from the test site to the laboratory in school by internet. Vibration state of the tower structure is diagnosed within the operating speed range. Resonance frequency range of the test model is investigated with the wind speed data of the test site.

  • PDF

Predictive Maintenance System using Condition Monitoring System of Hydro-turbine Generator (수차발전기 상태진단시스템을 이용한 예지보전체계)

  • Kim, Eung-Tae;Ko, Sung-Ho;Kim, Hyun;Jeong, Yong-Chae;Choi, Seong-Pil
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.57-60
    • /
    • 2006
  • The purpose of this study is to explain the importance of Vibration Monitoring Device by introducing an example of Predictive Maintenance System using Condition Monitoring System of Hydro-turbine generator. Confirming vibration of generation equipment is commissioning procedure during equipment completion for checking guaranteed items. Data from Generator output range are used to determine output band to continue the performance of equipment. The Vibration Monitoring System is not absolute method of maintenance, but if it is used well with expert, it will be visible, data-analyzed, scientific maintenance more than others. And also, Condition Monitoring System is very important for remote controlled small hydro-power plant although most of it is installed in Large hydro-power plant.

  • PDF

Development of a Wireless Vibration Monitoring System for Structural Health Evaluation (구조안전성 평가를 위한 무선 진동 모니터링 시스템 개발)

  • Shim, Bo-Gun;Lee, Shi-Bok;Chae, Min-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.166-171
    • /
    • 2010
  • Wired monitoring systems have been used for damage detection and dynamic analysis of large structures(bridges, dams, plants, etc.). However, the real-world applications still remain limited, mainly due to time and cost issues inherent to wired systems. In recent years, an increasing number of researchers have adopted WSN(wireless sensor network) technologies to the field of SHM(structural health monitoring). Accurate time synchronization is most critical for the wireless approach to be feasible for SHM purpose, along with sufficient wireless bandwidth and highly precise measuring resolution. To satisfy technical criteria stated above, a wireless vibration monitoring system that uses high-precision MEMS(micro-electro-mechanical system) sensors and A/D convertor is discussed in detail. It was found experimentally that the level of time synchronization fell within $200\;{\mu}sec$.

Report on Predictive Maintenance System using Condition Monitoring System of Hydro-turbine Generator (수차발전기 상태진단시스템을 이용한 예지보전체계 사례)

  • Ko, Sung-Ho;Jeong, Yong-Chae;Choi, Seong-Pil;Kwack, Young-Kyun;Han, Seung-Yeul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • The purpose of this study is to explain the importance of Vibration Monitoring Device by introducing an example of Predictive Maintenance System using Condition Monitoring System of Hydro-turbine generator. Confirming vibration of generation equipment is commissioning procedure during equipment completion for checking guaranteed items. Data from Generator output range are used to determine output band to continue the performance of equipment. The Vibration Monitoring System is not absolute method of maintenance, but if it is used well with expert, it will be visible, data-analyzed, scientific maintenance more than others. And also, Condition Monitoring System is very important for remote controlled small hydro-power plant although most of it is installed in Large hydro-power plant.

Development of Engine Vibration Analysis and Monitoring System(EVAMOS) for Marine Vessels (선박용 엔진 진동 분석 및 모니터링 시스템(EVAMOS) 개발에 관하여)

  • Lee, D.C.;Joo, K.S.;Nam, T.K.;Kim, E.S.;Kim, S.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.155-161
    • /
    • 2009
  • Engine builders have separately developed and applied torsional, axial and structural vibration monitoring system on most marine engines. These systems displayed their results for engine or ship operation engineers and were not regularly stored at the hardware of computer. So, the history and trend of various engine and hull vibrations were not supported for preventive maintenance and to protect the failure of these activity or function. The integrated vibration or stress monitoring system(EVAMOS : engine vibration analysis and monitoring system) in marine diesel engine, its accessories and hull structure have been developed by the dynamics laboratory of Mokpo Maritime University during last 3 years. This paper introduces the design conception and ability of commercial software EVAMOS with field data on several actual tests.

Vibration Monitoring and Diagnosis System Framework for 3MW Wind Turbine (3MW 풍력발전기 진동상태감시 및 진단시스템 프레임워크)

  • Son, Jong-Duk;Eom, Seung-Man;Kim, Sung-Tae;Lee, Ki-Hak;Lee, Jeong-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.8
    • /
    • pp.553-558
    • /
    • 2015
  • This paper aims at making a dedicated vibration monitoring and diagnosis framework for 3MW WTG(wind turbine generator). Within the scope of the research, vibration data of WTG drive train are used and WTG operating conditions are involved for dividing the vibration data class which included transient and steady state vibration signals. We separate two health detections which are CHD(continuous health detection) and EHD(event health detection). CHD has function of early detection and continuous monitoring. EHD makes the use of finding vibration values of fault components effectively by spectrum matrix subsystem. We proposed framework and showed application for 3MW WTG in a practical point of view.

Development of Vibration Powered Generator for Vibration Monitoring (진동모니터링을 위한 자가진동발전기의 개발)

  • 김재민;최남섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.434-441
    • /
    • 2003
  • This paper presents a generator for stand-alone vibration monitoring system of bridge structure based on ambient vibration of bridge. In this paper, a novel electric power generator which has minimum effect of armature reaction is proposed. The related mechanical and electrical design equations are obtained and a pilot generator has been implemented. In addition, the charging system for extremely low generator current is discussed, and some improvements are identified for the system. This investigation reveals that diode characteristics of rectifier is dominant factor in the charging process. Finally, both the simulation, which uses real measurement data of the Namhae bridge as input of the pilot generator, and indoor test are carried out. The results showed the applicability and effectiveness of the stand-alone vibration powered generator.

  • PDF