• Title/Summary/Keyword: Vibration Localization

Search Result 144, Processing Time 0.024 seconds

Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method (주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화)

  • Hwang, Eun-Sue;Lee, Jae-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.907-914
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, several sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array shows the most accurate determination of multiple sources' positions.

Impulsive sound localization using crest factor of the time-domain beamformer output (빔형성기 출력의 파고율을 이용한 충격음의 방향 추정)

  • Seo, Dae-Hoon;Choi, Jung-Woo;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.713-717
    • /
    • 2014
  • This paper presents a beamforming technique for locating impulsive sound source. The conventional frequency-domain beamformer is advantageous for localizing noise sources for a certain frequency band of concern, but the existence of many frequency components in the wide-band spectrum of impulsive noise makes the beamforming image less clear. In contrast to a frequency-domain beamformer, it has been reported that a time-domain beamformer can be better suited for transient signals. Although both frequency- and time-domain beamformers produce the same result for the beamforming power, which is defined as the RMS value of its output, we can use alternative directional estimators such as the peak value and crest factor to enhance the performance of a time-domain beamformer. In this study, the performance of three different directional estimators, the peak, crest factor and RMS output values, are investigated and compared with the incoherent interfering noise embedded in multiple microphone signals. The proposed formula is verified via experiments in an anechoic chamber using a uniformly spaced linear array. The results show that the peak estimation of beamformer output determines the location with better spatial resolution and a lower side lobe level than crest factor and RMS estimation in noise free condition, but it is possible to accurately estimate the direction of the impulsive sound source using crest factor estimation in noisy environment with stationary interfering noise.

  • PDF

Study on Be-Dopplerization Technique for Rotating Source Localization (마이크로폰 어레이를 이용한 회전하는 소음원 가시화에 관한 연구)

  • Park, Sung;Lee, Ja-Hyung;Choi, Jong-Soo;Kim, Jai-Moo;Rhee, Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.200-204
    • /
    • 2005
  • The use of beamforming method and de-Dopplerization technique was applied in studying the rotating sound sources. Acoustic analysis of a moving sound source required that the measured sound signals be do-Dopplerized and restored as of the original emission signals. Two main issues of the signal reconstruction in time domain are addressed herein: First, to remove Doppler effect from the measured data and to restore the original emission data of the moving source. The difference of the time domain beamforming from the frequency domain beamforming was mentioned. Also, the time domain beamforming method is deployed in the test and the comparisons were made to the frequency domain results. The time domain signal reconstruction was numerically simulated prior to the application. To validate the de-Dopplerization Performance, the rotating Point sources were examined and localized by the use of a phased array of microphone. The application of prop-rotor was conducted in a hovering condition. The results of reconstructing time signals of rotating sources and its locations were shown in the power distribution maps. In the prop-rotor measurements, the acoustic source locations were successfully verified in varying positions for different frequencies of interest.

  • PDF

An Accuracy Improvement Method on Acoustic Source Localization Using Ground Reflection Effect (지면반사효과를 이용한 폭발 소음원의 위치 추정 정밀도 향상법)

  • Go, Yeong-Ju;Choi, Donghun;Lee, Jaehyung;Choi, Jong-Soo;Ha, Jae-Hyoun;Na, Taeheum
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.69-74
    • /
    • 2016
  • A technique for improving estimation accuracy is introduced in order to locate the impact position of artillery shell during the weapon scoring test. Study on localization of impacts using acoustic measurement has been conducted and the usability of sensor array is verified with experiments. When the blast occurs above the ground in the firing range, the acoustic sensor above the ground can measure the directly propagated sound with the ground-reflected one. In this study, a method for reducing estimation error by using the reflection signal measurements based on the time difference of arrival method. Considering the reflection sound works as same as placing a virtual sensor symmetrically through the ground. This idea enables a virtual three-dimensional array configuration with a two-dimensional plane array above the ground as such. The time difference between the direct and the reflected propagations can be estimated using cepstrum analysis. Performance test has been made in the simulation experiment in the football size area.

Bridge-vehicle coupled vibration response and static test data based damage identification of highway bridges

  • Zhu, Jinsong;Yi, Qiang
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.75-90
    • /
    • 2013
  • In order to identify damage of highway bridges rapidly, a method for damage identification using dynamic response of bridge induced by moving vehicle and static test data is proposed. To locate damage of the structure, displacement energy damage index defined from the energy of the displacement response time history is adopted as the indicator. The displacement response time histories of bridge structure are obtained from simulation of vehicle-bridge coupled vibration analysis. The vehicle model is considered as a four-degree-of-freedom system, and the vibration equations of the vehicle model are deduced based on the D'Alembert principle. Finite element method is used to discretize bridge and finite element model is set up. According to the condition of displacement and force compatibility between vehicle and bridge, the vibration equations of the vehicle and bridge models are coupled. A Newmark-${\beta}$ algorithm based professional procedure VBAP is developed in MATLAB, and used to analyze the vehicle-bridge system coupled vibration. After damage is located by employing the displacement energy damage index, the damage extent is estimated through the least-square-method based model updating using static test data. At last, taking one simply supported bridge as an illustrative example, some damage scenarios are identified using the proposed damage identification methodology. The results indicate that the proposed method is efficient for damage localization and damage extent estimation.

Mode Localization in Multispan Beams with Massive and Stiff Couplers on Supports (지점 위에 질량과 강성이 큰 연결기를 갖는 다경간 보의 모드편재)

  • Dong-Ok Kim;Sun-Kyu Park;In-Won Lee
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1166-1171
    • /
    • 1998
  • The influences of the coupler consisting of stiffness and mass between neighboring two spans on mode localization are studied theoretically, and the results are confirmed by numerical examples. The mass of the coupler makes a structure sensitive to mode localization especially in higher modes while the stiffness does in all modes. A new type of delocalization phenomenon is observed for the first time in some modes for which mode localization does not occur or is very weak although structural disturbances are severe. A spring-mass system consisting of two substructures and a coupler connecting them is considered in the part of analytical study. As example structures for numerical analysis. simply supported continuous two-span beams with a coupler having a rotational stiffness and a mass moment of inertia on the mid support are considered.

  • PDF

Weight Lightening of HUMS Housing for Small Aircraft by Using FEM and Taguchi Method (유한요소법 및 다구찌 기법에 의한 소형항공기용 HUMS 하우징 경량화)

  • Kim, Jin-Su;Yoon, Dae-Won;Park, Tae-Sang;Jeong, Jae-Eun;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.12
    • /
    • pp.1045-1055
    • /
    • 2013
  • It is true that the dependency on import is currently high in case of the safety checkup system of domestic airplanes, and it is at the point of time that localization of HUMS for small airplanes is required. In this study, the design factors were selected for the lightweight of HUMS for small airplanes by using Pro-Engineer which is a design tool and Abaqus. 9 models were made through experiment plans with Taguchi method for this, and the each model for weight lightening was selected through vibration analysis and shock analysis while in operation with experiment profile values. After fabricating HUMS, it was verified that as a result of experiment with the same profile values as the analysis, there was similarity between the analyzed values and values of the experiment. As a result of performing weight lightening which is the purpose of the study, electronic performance for small airplanes is assured and a design plan reducing 15 % weight compared to the targeted weight was deduced. Besides, it could be verified that the light weight model satisfied the maximum allowable displacement value of PCB[printed circuit board] and accordingly satisfied electronic properties of HUMS. In this study, the reliability of a product was certified through the result of an experiment on ground. If the reliability of HUMS were verified through a test flight in the future, it is considered that it would make a big contribution to localization of aerospace electronic equipment.

An ensemble learning based Bayesian model updating approach for structural damage identification

  • Guangwei Lin;Yi Zhang;Enjian Cai;Taisen Zhao;Zhaoyan Li
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.61-81
    • /
    • 2023
  • This study presents an ensemble learning based Bayesian model updating approach for structural damage diagnosis. In the developed framework, the structure is initially decomposed into a set of substructures. The autoregressive moving average (ARMAX) model is established first for structural damage localization based structural motion equation. The wavelet packet decomposition is utilized to extract the damage-sensitive node energy in different frequency bands for constructing structural surrogate models. Four methods, including Kriging predictor (KRG), radial basis function neural network (RBFNN), support vector regression (SVR), and multivariate adaptive regression splines (MARS), are selected as candidate structural surrogate models. These models are then resampled by bootstrapping and combined to obtain an ensemble model by probabilistic ensemble. Meanwhile, the maximum entropy principal is adopted to search for new design points for sample space updating, yielding a more robust ensemble model. Through the iterations, a framework of surrogate ensemble learning based model updating with high model construction efficiency and accuracy is proposed. The specificities of the method are discussed and investigated in a case study.

Vibration based damage localization using MEMS on a suspension bridge model

  • Domaneschi, Marco;Limongelli, Maria Pina;Martinelli, Luca
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.679-694
    • /
    • 2013
  • In this paper the application of the Interpolation Damage Detection Method to the numerical model of a suspension bridge instrumented with a network of Micro-Electro-Mechanical System sensors is presented. The method, which, in its present formulation, belongs to Level II damage identification method, can identify the presence and the location of damage from responses recorded on the structure before and after a seismic damaging event. The application of the method does not require knowledge of the modal properties of the structure nor a numerical model of it. Emphasis is placed herein on the influence of recorded signals noise on the reliability of the results given by the Interpolation Damage Detection Method. The response of a suspension bridge to seismic excitation is computed from a numerical model and artificially corrupted with random noise characteristic of two families of Micro-Electro-Mechanical System accelerometers. The reliability of the results is checked for different damage scenarios.

A study on the characteristics of Vibration Reduction Type Disk bearing in Station of Rapid Transit Railway (역사 내 진동저감형 디스크 받침 특성에 관한 연구)

  • Park, Tae-Hyun;Park, Hean-Sang;Kim, Ho-Bae;Choi, Jin-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.297-302
    • /
    • 2011
  • Railway construction in the random vibration natural phenomena, as well as a relatively regular train loads for dynamic loads, such as a usability and safety should be ensured. Vibration due to train loads and seismic vibrations caused by wind compared to the typically very small in size, rather than the safety of the structure affects the usability. Recently in the downtown area, ground and underground facilities, such as a permanent facility that may cause excessive vibration increases, associated with the construction of these transportation facilities on ground vibrations of structures has been increasing concern and complaint. More recently, high-speed train vibration and noise due to furnace is increasing. In order to solve this problem, such as soundproof considering several feet, but by applying the vibration and noise reduction measures insufficient for the study is Free. In this study, track structure, track, and the inside of the building to support the system, the different forms of neurological history and share about the history cheonanahsan high-speed rail, if passed by the bus stop on the train loads of noise, and the history of interior noise and vibration measurement / analysis of measurement results to assess the relative comparison with the relevant provisions were reviewed. Based on this history, future plans for the design of the bridge to reflect the results of a study is intended to provide information. Waiting for the analysis of vibration and noise reduction, cheonanahsan history passed quietly in the train, on average, appeared to 67.53dB and 65.41dB nervous week on average, were measured with the history. Nervous week waiting room of history and the history cheonanahsan radically different shapes and sizes, so a direct comparison is impossible, but the vibration caused by the disc on the base of the polyurethane elastomer disk is not supported by GERB SYSTEM Waiting more effective in reducing the noise level considered in The main materials for railway and for the localization will help to ensure affordability is considered.

  • PDF