• 제목/요약/키워드: Vibration Isolation Technology

검색결과 100건 처리시간 0.023초

자력을 이용한 하이브리드 고무 마운트 (Hybrid Rubber Mount by Using Magnetic Force)

  • 안영공;김동우
    • 한국소음진동공학회논문집
    • /
    • 제24권3호
    • /
    • pp.236-246
    • /
    • 2014
  • This paper presents a hybrid rubber mount with magnet to isolate effectively the vibration in vehicle, forklift, and so on. The hybrid mount does not have any controller of the magnetic force. Dynamic stiffness of the mount is reduced by only magnetic suction according to the applied magnetic field and damping coefficient increased. Performance of conventional rubber mount with using electromagnet has been investigated by MTS Tester. The governing equation of the hybrid mount was derived and verified by comparison with experimental and theoretical results. The equation can be used practically and usefully in the design of the mount and analysis of the mounting system. The hybrid mount provides excellent performance in vibration isolation and its structure is very simpler than active with controller and a semi-active mount with a functional fluid. Furthermore, production cost of the mount using permanent magnets is very lower than that of the active mount with electromagnets. Therefore, commercial potential of the mount is very high.

A Study on the Body Attachment Stiffness for the Road Noise

  • Kim Ki-Chang;Kim Chan-Mook
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1304-1312
    • /
    • 2005
  • The ride and noise characteristics of a vehicle are significantly affected by the vibration transferred to the body through the chassis mounting points in the engine and suspension. It is known that body attachment stiffness is an important factor of idle noise and road noise for NVH performance improvement. The body attachment stiffness serves as a route design aimed at isolating the vibration generated inside the car due to the exciting force of the engine or road. The test result of the body attachment stiffness is shown in the FRF curve data; the stiffness level and sensitive frequency band are recorded by the data distribution. The stiffness data is used for analyzing the parts that fail to meet the target stiffness at a pertinent frequency band. The analysis shows that the target frequency band is between 200 and 500 Hz. As a result of the comparison in a mounted suspension, the analysis data is comparable to the test data. From these results, there is a general agreement between the predicted and measured responses. This procedure makes it possible to find the weak points before a proto car is produced, and to suggest proper design guidelines in order to improve the stiffness of the body structure.

이온 빔 이용 통합시스템의 제작 및 구조해석 (Structural Analysis and Manufacturing of the Integrated System using Ion Beam)

  • 김성걸
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.88-95
    • /
    • 2007
  • Generally, the integrated system using ion beam consists of 4 major parts, which are SEM, FIB, nano stage, and chamber. Among them, the nano stage and the chamber are designed and manufactured. The whole systems are integrated. Also, FE models are built to perform modal analyses of each part and the whole integrated system with a commercial program. Through these analyses, it is found that each part and the integrated system are very safe against vibrations including external excitations from ground and any others, because their natural frequencies are much larger than frequencies of external excitations. Also, isolation of ground induced vibration is considered.

유체가 채워진 실린더형 공동에 의한 탄성파 공명 산란 해석 (Elastic Wave Resonance Scattering from a Fluid-filled Cylindrical Cavity)

  • Huinam Rhee;Park, Youngjin
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.208-213
    • /
    • 2002
  • A new method is presented for the isolation of resonances from scattered waves for elastic wave resonance scattering problems. The resonance scattering function consisting purely of resonance information is defined. Elastic wave resonance scattering from a water-filled cylindrical cavity imbedded in an aluminum matrix is numerically analyzed. The classical resonance scattering theory and the new method compute different magnitudes and phases of the resonances from each partial wave, and therefore. their total resonance spectra are quite different. The exact $\pi$ - radians phase shifts through the resonance and anti-resonance frequencies show that the proposed method properly extracts the vibrational resonance information of the scatterer compared to resonance scattering theory.

  • PDF

외부챔버와 유연한 튜브로 연결된 LCD 패널 검사기 방진용 공기 스프링의 열 및 동적 연성거동에 대한 연구: PART II, 실험적 검증 및 고찰 (Study on the Thermal and Dynamic Behaviors of Air Spring for vibration isolation of LCD panel inspecting machine connected with an External Chamber through a flexible tube: PART II, Experimental validation and investigation)

  • 석종원;이주홍;김필기
    • 반도체디스플레이기술학회지
    • /
    • 제10권1호
    • /
    • pp.43-49
    • /
    • 2011
  • In this study, the dynamic characteristics of an air spring connected with an external chamber through a flexible tube are examined. The uncoupled dynamic parameters of the air spring are identified through experiments, followed by the suggestion of a model-based approach to obtain the remaining coupled dynamic parameters using the various frequency response functions derived in PART I paper [1]. To improve or control the damping characteristics of the air spring, this vibration isolation air spring system is physically established in laboratory scale. And we attempt to identify various parameters used to describe to air spring system by both theoretically [1] and experimentally, which is performed in this report. The damping parameter of the tube system is identified through experiments on the system incorporated with the air cylinder, and a nonlinear regression procedure is employed to find solutions. The resulting value is used to expect the frequency response function of dynamic pressure in the top chamber (air spring) with respect to that in the bottom chamber (external chamber). Comparison with the experimental data supports the validity of the present estimation procedures. Also, the dynamic mechanism of the damping effects particularly in a low frequency range is investigated through this experimental endeavor.

유체봉입 마운트의 유로 조절에 따른 진동감쇠 성능향상 (Dynamic Analysis of Switchable Hydraulic Engine Mount with an Inertia Track and a Decoupler)

  • 안영공
    • 한국소음진동공학회논문집
    • /
    • 제27권1호
    • /
    • pp.80-86
    • /
    • 2017
  • This paper describes switching method of the cross-sectional area of the fluid passage way to improve the performance of a hydraulic engine mount with an inertia track and a decoupler. The mount has nonlinear dynamic characteristics depending on the vibrational frequency and amplitude. For the convenience of analysis, two linear motion equations were derived on the basis of the mechanical model according to the low-and high-frequencies. The properties of the transmissibility and dynamic stiffness derived from the equations were investigated according to switching the cross-sectional area of the inertia track and decoupler. Switching method of the cross-sectional area can be derived from the transmissibility plot. In comparison between transmissibility of passive and switchable mounts with an inertia track and a decoupler, the performance of the switchable mount is improved greatly than the passive mount. The resonant peak is remarkably reduced in the high frequency region.

환경진동의 지반내 전파특성과 차단에 관한 원심모형실험 (Centrifuge Simulation of Wave Propagation and Isolation Method)

  • 이강일;일하부치;김찬기;김태훈;실진성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.738-745
    • /
    • 2004
  • There are a number of ways to reduce the ground vibrations, one of which is by installing underground walls. Model tests for ground vibration have been conducted in recent years, but limited attention has been paid to underground wall which can reduce high vibrations. Up to date, only barriers have been actually installed in dry sand because of many unknown factors subsisting on the behavior of the ground. The characteristics of vibration sources, ground conditions and wall barriers have not been well understood yet, therefore centrifugal modeling was adopted to examine all these characteristics. This paper describes a ball dropping system, which can generate a pulse wave propagation through soil mass, and the test results show the effectiveness of underground wall barrier in reducing mechanical vibration.

  • PDF

차음구조물의 방사음향파워로부터 고체 및 공기전파음향파워의 정량적인 분리법 (A Quantitative Separation Method of Structure and Air Borne Sound Power from the Enclosure)

  • 김의간;강동림
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제16권5호
    • /
    • pp.85-96
    • /
    • 1992
  • Engine enclosures are widely adopted to reduce the noise emission in various fields of application. The radiated noise, which is due to the vibration of enclosure's outer surface, is composed of two kinds of sound power with different path of propagation. One is the 'structure-borne sound power' which stems from the engine's vibratory force applied to the structure of enclosure through the mounting parts of engine etc., while the other is the 'air-borne sound power' which is originated by the sound power radiated from the engine surface to the inner space of enclosure that should excite the vibration of enclosure from inside. In order to get a most efficient engine enclosure is required a profound consideration upon the above structure-borne and air-borne noise, since the guiding principle of countermeasure for each noise is quite different. The controlling of input vibration and its isolation are major subject for the structure-borne sound power and the specifications of absorbing member and damping panels are the major interests for the air-borne sound power. Hence it seems very efficient to separate the total sound power into two categories with a great accuracy when one think of further reduction of engine noise from the exciting enclosure, however, its separating methods have not been made clear for many years. Then author proposes a new practical separation method of two propagation path's contribution to the total radiation sound power for the enclosure under the engine operating condition.

  • PDF

상용 유한요소해석 프로그램을 이용한 공압 스프링 내 다이아프램의 복소강성 산출 (COMPUTATION OF COMPLEX STIFFNESS OF INFLATED DIAPHRAGM IN PNEUMATIC SPRINGS BY USING FE CODES)

  • 이정훈;김광준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.844-849
    • /
    • 2006
  • Accurate modeling of complex dynamic stiffness of the pneumatic springs is crucial for an efficient design of vibration isolation tables for precision instruments such as optical devices or nano-technology equipments. Besides pressurized air itself, diaphragm made of rubber materials, essentially employed for prevention of air leakage, plays a significant contribution to the total complex stiffness. Therefore, effects of the diaphragm should be taken care of precisely. The complex stiffness of an inflated diaphragm is difficult to predict or measure, since it is always working together with the pressurized air. In our earlier research, the complex stiffness of a diaphragm was indirectly estimated simply by subtracting stiffness of the pressurized air from measurement of the total complex stiffness for a single chamber pneumatic spring. In order to reflect dynamic stiffness of inflated diaphragm on the total stiffness at the initial design or design improvement stage, however, it is required to be able to predict beforehand. In this presentation, how to predict the complex stiffness of inflated rubber diaphragm by commercial FE codes(e.g. ABAQUS) will be discussed and the results will be compared with the indirectly measured values.

  • PDF

MR마운트 진동제어 성능 향상을 위한 슬라이딩 모드 제어 (Sliding Mode Control for Improving Performance of Mount with MR(Magneto-Rheological) Fluid)

  • 안영공;김성하;정석권
    • 동력기계공학회지
    • /
    • 제21권4호
    • /
    • pp.18-25
    • /
    • 2017
  • This paper deals with vibration control of a small mount with MR(Magneto-Rheological) fluid as a functional fluid mount for precision equipment of automobiles. Damping and stiffness coefficients of the mount with MR fluid are changed by variations of the applied magnetic field strength. We present the robust control scheme, based on a conventional sliding mode control theory, for the design of a stable controller that is capable of vibration control due to various disturbances such as impact and periodic excitations, and is insensitive to dynamic properties of the mount. We got stable controller by using Lyapunov stability theory. The controller is then realized by using a semi-active control condition in simulations. Chattering problem of the sliding mode control is eliminated by saturation function instead of signum function. The sliding mode control with Lyapunov stability theory is superior to passive and Sky-Hook control in performance.