• 제목/요약/키워드: Vibration Identification

검색결과 842건 처리시간 0.028초

Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses

  • Cho, Soojin;Jo, Hongki;Jang, Shinae;Park, Jongwoong;Jung, Hyung-Jo;Yun, Chung-Bang;Spencer, Billie F. Jr.;Seo, Ju-Won
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.461-480
    • /
    • 2010
  • This paper analyses the data collected from the $2^{nd}$ Jindo Bridge, a cable-stayed bridge in Korea that is a structural health monitoring (SHM) international test bed for advanced wireless smart sensors network (WSSN) technology. The SHM system consists of a total of 70 wireless smart sensor nodes deployed underneath of the deck, on the pylons, and on the cables to capture the vibration of the bridge excited by traffic and environmental loadings. Analysis of the data is performed in both the time and frequency domains. Modal properties of the bridge are identified using the frequency domain decomposition and the stochastic subspace identification methods based on the output-only measurements, and the results are compared with those obtained from a detailed finite element model. Tension forces for the 10 instrumented stay cables are also estimated from the ambient acceleration data and compared both with those from the initial design and with those obtained during two previous regular inspections. The results of the data analyses demonstrate that the WSSN-based SHM system performs effectively for this cable-stayed bridge, giving direct access to the physical status of the bridge.

운용중 모드해석 방법과 신경망을 이용한 온라인 유한요소모델 업데이트 (On-line Finite Element Model Updating Using Operational Modal Analysis and Neural Networks)

  • 박원석
    • 한국전산구조공학회논문집
    • /
    • 제34권1호
    • /
    • pp.35-42
    • /
    • 2021
  • 이 논문에서는 공용중인 구조물의 상시 계측 자료를 사용한 온라인 유한요소 모델 업데이트 방법을 제안한다. 일반적인 최적화 방법에 기반한 기존의 방법은 최적해를 찾기까지 반복적으로 고유치 해석을 수행해야 하므로 상시 업데이트에 사용하기에는 효과적이지 못하다. 제안하는 방법은 별도의 오프라인 작업이나 사용자의 개입이 없이 자동화된 과정으로 계측과 동시에 온라인 유한요소모델 업데이트를 수행할 수 있는 새로운 방법이다. 자동화된 Cov-SSI 알고리즘을 통해 구조물의 진동 계측 신호로부터 고유진동수 및 모드 형상을 식별하고, 이를 다시 역 고유치 신경망에 입력하여 최종적으로 업데이트된 유한요소 모델의 파라미터를 추정한다. 풍하중을 받는 20층 전단 빌딩 구조 모형에 대한 수치예제를 통해 제시한 방법이 자동으로 연속적인 유한요소모델 업데이트를 할 수 있었음을 확인하였다. 또한, 계측 도중 구조물의 특성이 변화하는 시나리오에 대한 예제에서 구조물의 변화가 일어나는 시점과 변화 후 변동된 구조 모델 파라미터 값을 성공적으로 추정할 수 있음을 확인하였다.

열린 끝단과 중앙 홈을 갖는 스퀴즈 필름 댐퍼의 감쇠 특성에 대한 실험적 규명 (Experimental Identification of the Damping Characteristics of a Squeeze Film Damper with Open Ends and Central Groove)

  • 김남규;김태호;강경대
    • Tribology and Lubricants
    • /
    • 제40권1호
    • /
    • pp.28-37
    • /
    • 2024
  • This paper presents the development of a squeeze film damper (SFD) test rig and experimental identification of the effects of clearance, damper length, journal eccentricity ratio, excitation amplitude, oil supply pressure, and oil flow rate on the damping coefficients of a test SFD with open ends and a central groove. Test data are compared with predictions from a simple model developed for short SFDs with open ends and a central groove. The test results show a significant decrease in the damping coefficient with increasing clearance and a dramatic increase with damper length, which are in good agreement with the simple model predictions. According to the simple model, the damping coefficient is inversely proportional to the cube of the clearance and directly proportional to the cube of the length. An increase in the journal eccentricity ratio results in a dramatic increase in the damping coefficient by as much as 15 times that of the concentric case, particularly at low excitation frequencies. By contrast, the measured damping coefficient remains almost constant with changes in the excitation amplitude and supply pressure, which are not major factors in the damper design. In general, the test data agree well with the simple model predictions, excluding cases that show increases in the SFD length and journal eccentricity, which indicate significant dependency on the excitation frequency.

Two-stage crack identification in an Euler-Bernoulli rotating beam using modal parameters and Genetic Algorithm

  • Belen Munoz-Abella;Lourdes Rubio;Patricia Rubio
    • Smart Structures and Systems
    • /
    • 제33권2호
    • /
    • pp.165-175
    • /
    • 2024
  • Rotating beams play a crucial role in representing complex mechanical components that are prevalent in vital sectors like energy and transportation industries. These components are susceptible to the initiation and propagation of cracks, posing a substantial risk to their structural integrity. This study presents a two-stage methodology for detecting the location and estimating the size of an open-edge transverse crack in a rotating Euler-Bernoulli beam with a uniform cross-section. Understanding the dynamic behavior of beams is vital for the effective design and evaluation of their operational performance. In this regard, modal parameters such as natural frequencies and eigenmodes are frequently employed to detect and identify damages in mechanical components. In this instance, the Frobenius method has been employed to determine the first two natural frequencies and corresponding eigenmodes associated with flapwise bending vibration. These calculations have been performed by solving the governing differential equation that describes the motion of the beam. Various parameters have been considered, such as rotational speed, beam slenderness, hub radius, and crack size and location. The effect of the crack has been replaced by a rotational spring whose stiffness represents the increase in local flexibility as a result of the damage presence. In the initial phase of the proposed methodology, a damage index utilizing the slope of the beam's eigenmode has been employed to estimate the location of the crack. After detecting the presence of damage, the size of the crack is determined using a Genetic Algorithm optimization technique. The ultimate goal of the proposed methodology is to enable the development of more suitable and reliable maintenance plans.

지반-구조물 상호작용계의 강성계수추정 및 비선형지진해석 (Parameter Identification and Nonlinear Seismic Analysis of Soil-Structure Interaction System)

  • 윤정방;최준성;김재민;김문수
    • 한국지진공학회논문집
    • /
    • 제1권1호
    • /
    • pp.41-49
    • /
    • 1997
  • 본 논문에서는 국제공동연구원 대형지진시험구조물의 강세진동시험결과 대한 상관해석와 지진응답해석에 관해 연구하였다. 지반-구조물 상호작용을 위해서 구조물과 근영지반은 유한요소로 모형화하고 원역지반은 무한요소로 모형화하는 직적법을 사용하였으며, 지진응답은 부분구조법에 근거한 파 입력기법을 사용하여 해석하였다. 시험후 상관해석을 통해 각 지반영역의 물성이 강제진동 시험에서 계측된 구조물 응답과 일치하도록 보정하였다. 보정된 지반물성을 초기 선형값으로 사용하고 등가선형화기법을 적용하여 지진에 관한 구조물의 응답을 예측하였다. 지반의 비선형거동을 고려하여 얻어진 구조물 응답은 계측된 결과와 매우 잘 일치한 반면, 초기 선형물성치를 사용한 응답결과는 상당한 차이를 보이고 있어서, 지반 비선형 거동의 영향이 중요함을 알 수 있었다.

  • PDF

제동시 발생하는 리어 드럼브레이크 Grunt(stick-slip) Noise 개선 (Rear Drum Brake Grunt(stick-slip) Noise Improvement on Braking During Nose-dive & Return Condition)

  • 홍일민;장명훈;김선호;최홍석
    • 한국소음진동공학회논문집
    • /
    • 제23권9호
    • /
    • pp.781-788
    • /
    • 2013
  • Grunt(stick-slip) noise happens between rear lining and drum on braking condition while vehicle is returning to steady position after nose-dive. The study presents a new testing and analysis methods for improving brake grunt noise on vehicle. Grunt noise is called a kind of stick slip noise with below 1 kHz frequency that is caused by the surfaces alternating between sticking to each other and sliding over each other with a corresponding change in friction force. This noise is typically come from that the static friction coefficient of surfaces is much higher than the kinetic friction coefficient. For the identification of the excitation mechanism and improvement of grunt noise, it is necessary to study variable parameters of rear drum brake systems on vehicle and to implement CAE analysis with stick slip model of drum brake. The aim of this study has been to find solution parameters throughout test result on vehicle and dynamo test. As a result of this study, it is generated from stick slip between rear lining and rear drum and it can be solved to reduce contact angle of lining with asymmetric and is effected not only brake drum strength but also rear brake size and brake factor.

진동 제어 장치를 포함한 구조물의 지진 응답 예측을 위한 순환신경망의 하이퍼파라미터 연구 (Research on Hyperparameter of RNN for Seismic Response Prediction of a Structure With Vibration Control System)

  • 김현수;박광섭
    • 한국공간구조학회논문집
    • /
    • 제20권2호
    • /
    • pp.51-58
    • /
    • 2020
  • Recently, deep learning that is the most popular and effective class of machine learning algorithms is widely applied to various industrial areas. A number of research on various topics about structural engineering was performed by using artificial neural networks, such as structural design optimization, vibration control and system identification etc. When nonlinear semi-active structural control devices are applied to building structure, a lot of computational effort is required to predict dynamic structural responses of finite element method (FEM) model for development of control algorithm. To solve this problem, an artificial neural network model was developed in this study. Among various deep learning algorithms, a recurrent neural network (RNN) was used to make the time history response prediction model. An RNN can retain state from one iteration to the next by using its own output as input for the next step. An eleven-story building structure with semi-active tuned mass damper (TMD) was used as an example structure. The semi-active TMD was composed of magnetorheological damper. Five historical earthquakes and five artificial ground motions were used as ground excitations for training of an RNN model. Another artificial ground motion that was not used for training was used for verification of the developed RNN model. Parametric studies on various hyper-parameters including number of hidden layers, sequence length, number of LSTM cells, etc. After appropriate training iteration of the RNN model with proper hyper-parameters, the RNN model for prediction of seismic responses of the building structure with semi-active TMD was developed. The developed RNN model can effectively provide very accurate seismic responses compared to the FEM model.

스트레인 출력 되먹임을 이용한 구조 시스템 계수 추정 (Structural System Parameter Estimation using Strain Output Feedback)

  • 하재훈;박윤식;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.124-127
    • /
    • 2005
  • As computer capability and test skill become more and more advanced, finite element method and modal test are being widely applied in engineering design. In order to correlate and reconcile the inevitable discrepancies between the analytical and experimental models, many techniques have been developed. Among these methods, multiple-system methods are known as the effective tools in that they can supply the rich modal data available which are experimentally obtained. These abundant modal data can help structural system parameters estimated well. Multiple-system methods can be classified into the structural modification methods and feedback controller methods. The structural modification methods need the physical attachment of structures and their concept may limit the application of them. To overcome this drawback, the feedback controller methods are addressed which enable us to get more modal data without the structural change. Mode decoupling controller(MDC), one of them, is to use acceleration out)ut feedback to perturb an open-loop system. The output feedback controller generally cannot guarantee the stability of a closed-loop system. However, MDC can solve this problem under the certain constraints. So far, MDC utilizes accelerations as the sensor signals. In this research, strain sensors are going to be picked up to apply to the MDC. Strain output is recently used for structural system identification due to the drastically improved and miniaturized strain sensor. In this paper, we show that the MDC using strain output has differences compared with acceleration output in estimating the structural system parameters. The associated simulation is performed to demonstrate the above mentioned characteristics.

  • PDF

Full-scale 실험 모드해석을 이용한 노후화된 철도판형교의 진동특성 (Vibrational Characteristics of the Deteriorated Railway Plate Girder Bridge by Full-scale Experimental Modal Analysis)

  • 김주우;정희영
    • 한국강구조학회 논문집
    • /
    • 제24권1호
    • /
    • pp.119-128
    • /
    • 2012
  • 본 연구에서는 실험적 모드해석 기법을 이용하여 외부환경에 직접 노출되어 있는 실제 철도판형교의 full-scale 동적 테스트가 수행되었다. 충격해머 모드실험에 의해 얻어진 철도판형교의 모드 매개변수를 유한요소해석으로부터 구한 고유진동수와 모드형상과 비교, 분석하였다. 실험적 모드해석에 의해 측정된 실험 데이터와 해석적 진동분석에서 얻어지는 출력만의 데이터를 교량 부재의 기하학적 특성 및 재료적 특성을 다양하게 고려하여 모델보정 테크닉에 적용하였다. 철도판형교의 실험적 모드해석 결과를 검증하기 위한 유한요소모델이 모드인식 기법을 이용하여 보정되었다. 실험 데이터와 유한요소해석 기준모델의 모델보정과정의 결과와 함께 부재특성의 변화를 통하여 이루질 수 있는 손상평가에 대한 기초적 데이터베이스가 제공된다.

자기베어링 시스템을 가진기로 이용한 스퀴즈 필름 댐퍼의 동강성 계수 규명 (Identification of Dynamic Stiffness of Squeeze Film Damper using Active Magnetic Bearing System as an Exciter)

  • 김근주;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.381-387
    • /
    • 2002
  • In this work, the dynamic characteristics of an oil-lubricated, short SFD with a central feeding groove are derived based on a theoretical analysis considering the effect of a groove. The validity of the analysis is investigated experimentally using an Active Magnetic Bearing (AMB) system as an exciter. For the theoretical solution, the fluid film forces of a grooved SFD are analytically derived so that the dynamic coefficients of a SFD are expressed in terms of its design parameters. For the experimental validation of the analysis, a test rig using AMB as an exciter is proposed to identify the dynamic characteristics of a short SFD with a central groove. As an exciter, the AMB represents a mechatronic device to levitate and position the test journal without any mechanical contact, to generate relative motions of the journal inside the tested SFD and to measure the generated displacements during experiments with fairly high accuracy. Using this test rig, experiments are extensively conducted with different clearance, which is one of the most important design parameters, in order to investigate its effect on the dynamic characteristics and the performance of SFDs. Damping and inertia coefficients of the SFD that are experimentally identified are compared with the analytical results to demonstrate the effectiveness of the analysis. It is also shown that AMB is an ideal device for tests of SFDs.

  • PDF