• 제목/요약/키워드: Vibration Identification

검색결과 842건 처리시간 0.025초

Dynamic Characteristic Identification on Steel Column bases Installed in Pendulum-type Earthquake Response Observatory

  • Choi, Jae-Hyouk;Ohi, Kenichi
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2225-2235
    • /
    • 2004
  • An observatory termed 'Steel Swing' has been developed, where a 15000 kg pendulum is hanged from a stiff steel frame. A building element can be tested after inserted between the pendulum and the frame. Free vibration, forced vibration tests and earthquake monitoring were performed on an exposed-type steel column base. The response records monitored during natural earthquakes were used to identify the vibration property of the specimen. Identified system gain was approximated by a theoretical gain of linear SDOF system, and the response calculated based on such a linear system agrees with the monitored response fairly well. This research technique can be applied to check the behaviors of new materials and new details of connections and the safety of non-structural elements as well.

A review on recent development of vibration-based structural robust damage detection

  • Li, Y.Y.;Chen, Y.
    • Structural Engineering and Mechanics
    • /
    • 제45권2호
    • /
    • pp.159-168
    • /
    • 2013
  • The effect of structural uncertainties or measurement errors on damage detection results makes the robustness become one of the most important features during identification. Due to the wide use of vibration signatures on damage detection, the development of vibration-based techniques has attracted a great interest. In this work, a review on vibration-based robust detection techniques is presented, in which the robustness is considerably improved through modeling error compensation, environmental variation reduction, denoising, or proper sensing system design. It is hoped that this study can give help on structural health monitoring or damage mitigation control.

카메라를 이용한 구조물의 동특성 추출 (Modal Parameter Extraction Using a Digital Camera)

  • 김병화
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1229-1236
    • /
    • 2008
  • A set of modal parameters of a stay-cable have been extracted fi:on a moving picture captured by a digital camera supported by shaking hands. It is hard to identify the center of targets attached on the cable surface from the blurred cable motion image, because of the high speed motion of cable, low sampling frequency of camera, and the shaking effect of camera. This study proposes a multi-template matching algorithm to resolve such difficulties. In addition, a sensitivity-based system identification algorithm is introduced to extract the natural frequencies and damping ratios from the ambient cable vibration data. Three sets of vibration tests are conducted to examine the validity of the proposed algorithms. The results show that the proposed technique is pretty feasible for extracting modal parameters from the severely shaking motion pictures.

Field Measurement and Modal Identification of Various Structures for Structural Health Monitoring

  • Yoshida, Akihiko;Tamura, Yukio
    • 국제초고층학회논문집
    • /
    • 제4권1호
    • /
    • pp.9-25
    • /
    • 2015
  • Field measurements of various structures have been conducted for many purposes. Measurement data obtained by field measurement is very useful to determine vibration characteristics including dynamic characteristics such as the damping ratio, natural frequency, and mode shape of a structure. In addition, results of field measurements and modal identification can be used for modal updating of FEM analysis, for checking the efficiency of damping devices and so on. This paper shows some examples of field measurements and modal identification for structural health monitoring. As the first example, changes of dynamic characteristics of a 15-story office building in four construction stages from the foundation stage to completion are described. The dynamic characteristics of each construction stage were modeled as accurately as possible by FEM, and the stiffness of the main structural frame was evaluated and the FEM results were compared with measurements performed on non-load-bearing elements. Simple FEM modal updating was also applied. As the next example, full-scale measurements were also carried out on a high-rise chimney, and the efficiency of the tuned mass damper was investigated by using two kinds of modal identification techniques. Good correspondence was shown with vibration characteristics obtained by the 2DOF-RD technique and the Frequency Domain Decomposition method. As the last example, the wind-induced response using RTK-GPS and the feasibility of hybrid use of FEM analysis and RTK-GPS for confirming the integrity of structures during strong typhoons were shown. The member stresses obtained by hybrid use of FEM analysis and RTK-GPS were close to the member stresses measured by strain gauges.

감속 시의 고정부 작용력 측정을 이용한 반작용휠 계의 가진 입력 특성 규명 (Identification of Input Force for Reaction Wheel of Satellite by Measured Action Force on Decelerating)

  • 신윤호;허용화;오시환;김대관;김광준;용기력
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.671-677
    • /
    • 2009
  • A reaction wheel is commonly used, as an important actuator, to control the attitude of a satellite. Operation of the reaction wheel plays a role of an excitation source to loading equipment inside the satellite. As requirements for environmental vibration to manifest the performance of precision equipment are getting more stringent, the research for analysis or reduction of unwanted action force in high frequency range when operating the reaction wheel is necessary. In this paper, the procedure to extract input forces and damping of a rotor system of reaction wheel is suggested. The analysis for measured action forces of reaction wheel is accomplished and important higher harmonics of action forces are determined. The input forces and damping of the rotor system are, then, extracted by curve-fitting and a particular solution for input force.

  • PDF

자성유체를 이용한 스퀴즈 필름 댐퍼의 동특성 동정 (Identification of Dynamic property of Squeeze Film Damper Using Magnetic Fluid)

  • 안영공;하종용;김용한;안경관;양보석;삼하신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.227-230
    • /
    • 2005
  • The paper presents the identification of dynamic property of a rotor system with a squeeze film damper (SFD) using magnetic fluid. An electromagnet is installed in the inner damper of the SFD. The magnetic fluid is well known as a functional fluid. Its rheological property can be changed by controlling the applied current to the fluid and the fluid can be used as lubricant. Basically, the proposed SFD has the characteristics of a conventional SFD without an applied current, while the damping and stiffness properties change according to the variation of the applied electric current. Therefore, when the applied current is changed, the whirling vibration of the rotor system can be effectively reduced. The clustering-based hybrid evolutionary algorithm (CHEA) is used to identify linear stiffness and damping coefficients of the SFD based on measured unbalance responses.

  • PDF

A study on aeroelastic forces due to vortex-shedding by reduced frequency response function

  • Zhang, Xin;Qian, Zhanying;Chen, Zhen;Zeng, Fanna
    • Wind and Structures
    • /
    • 제12권1호
    • /
    • pp.63-76
    • /
    • 2009
  • The vortex-induced vibration of an ${\sqcap}$-shaped bridge deck sectional model is studied in this paper via the wind tunnel experiment. The vibratory behavior of the model shows that there is a transition of the predominant vibration mode from the vertical to the rotational degree of freedom as the wind speed increases gradually or vice versa as the wind speed decreases gradually. The vertical vibration is, however, much weaker in the latter case than in the former. This is a phenomenon which is difficult to model by existing parametric models for vortex-induced vibrations. In order to characterize the aeroelastic property of the ${\sqcap}$-shaped sectional model, a time domain force identification scheme is proposed to identify the time history of the aeroelastic forces. After the application of the proposed method, the resultant fluid forces are re-sampled in dimensionless time domain so that reduced frequency response function (RFRF) can be obtained to explore the properties of the vortex-induced wind forces in reduced frequency domain. The RFRF model is proven effective to characterize the correlation between the wind forces and bridge deck motions, thus can explain the aeroelastic behavior of the ${\sqcap}$-shaped sectional model.

부분기여도함수를 이용한 증발기의 소음원 분석 (Noise-source Identification of Evaporator Using Partial Coherence Function)

  • 최기수;정의봉;한형석;김민성
    • 한국소음진동공학회논문집
    • /
    • 제19권4호
    • /
    • pp.347-354
    • /
    • 2009
  • Frequency analysis is one of the most useful way to analyze response signal for the purpose of grasping the dynamic characteristics of system through Fourier transformation. Although it is very effective way for frequency analysis, it is hard to analyze out a specific sound or vibration component which is correlated with others. In this thesis, source contribution analysis tool for NI-PXI equipment is developed with LabVIEW using coherences of MISO(multiple-input single-output) model. For the purpose of examining propriety of developed tool, simulation is performed with several correlated signals that have different frequency range. After checking the OCF(ordinary coherence function) and PCF(partial coherence function) of the each signal for concerned frequency domain, an experiment is conducted on an evaporator that cause the principal noise of a refrigerator. This developed tool will be expected to build up more convenient and serviceable measurement system.

초음파 트랜스듀서의 종진동을 이용한 알루미늄 와이어 용접 (Aluminum Wire Bonding by Longitudinal Vibration of Ultrasonic Transducer)

  • Lee, G.B.;Kim, H.S.
    • 한국정밀공학회지
    • /
    • 제13권11호
    • /
    • pp.38-45
    • /
    • 1996
  • In recent years, ultrasonic has been widely applied in measurement and industrial fields and its application range has been expanded as a result of continuous research and development. Wire Bonding Machine, an instrument fabricating semi-conductor, makes use of ultrasonic bonding method. Specially, the method utilizes the longitudinal vibration of ultrasonic transducer composed of piezoelectric vibrator and horn. This work investigates the design conditions affecting the dynamic characteristics through the theretical and experimental analysis. It conducts separately the system identification of piezoelectric vibrator in time domain and the modal analysis of horn in frequency domain. The integrated modeling is conducted via a combbination of dynamic identification of piezoelectric vibrator and theroretical analysis of horn. Then comparison is made for theroretical and experimental results of the dynamic characteristics of the ultrasonic transducer comprised of piezoelectric vibrator and horn. Form the results of the comparison we develop the design technique of ultrasonic transducer using dynamic characteristics analysis and propose the possibility of ultrasonic bonding considering the optimal conditions for the longitudinal vibration of ultrasonic transducer and other conditions.

  • PDF

System identification of the suspension tower of Runyang Bridge based on ambient vibration tests

  • Li, Zhijun;Feng, Dongming;Feng, Maria Q.;Xu, Xiuli
    • Smart Structures and Systems
    • /
    • 제19권5호
    • /
    • pp.523-538
    • /
    • 2017
  • A series of field vibration tests are conducted on the Runyang Suspension Bridge during both the construction and operational stages. The purpose of this study is devoted to the analysis of the dynamic characteristics of the suspension tower. After the tower was erected, an array of accelerometers was deployed to study the evolution of its modal parameters during the construction process. Dynamic tests were first performed under the freestanding tower condition and then under the tower-cable condition after the superstructure was installed. Based on the identified modal parameters, the effect of the pile-soil-structure interaction on dynamic characteristics of the suspension tower is investigated. Moreover, the stiffness of the pile foundation is successfully identified using a probabilistic finite model updating method. Furthermore, challenges of identifying the dynamic properties of the tower from the coupled responses of the tower-cable system are discussed in detail. It's found that compared with the identified results from the freestanding tower, the longitudinal and torsional natural frequencies of the tower in the tower-cable system have changed significantly, while the lateral mode frequencies change slightly. The identified modal results from measurements by the structural health monitoring system further confirmed that the vibrations of the bridge subsystems (i.e., the tower, the suspended deck and the main cable) are strongly coupled with one another.