• 제목/요약/키워드: Vibration Identification

검색결과 842건 처리시간 0.037초

발전기 고정자 프레임의 모우드 매개변수 규명 (Modal Parameter Identification of a Generator Stator Frame)

  • 류석주;김철홍;박종포;서명덕;김호종
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.116-120
    • /
    • 1997
  • The modal testing results of a generator stator frame for a 500MW fossil power plant are presented, which will be used to tune and to validate the finite element model of the stator frame.

  • PDF

The engineering merit of the "Effective Period" of bilinear isolation systems

  • Makris, Nicos;Kampas, Georgios
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.397-428
    • /
    • 2013
  • This paper examines whether the "effective period" of bilinear isolation systems, as defined invariably in most current design codes, expresses in reality the period of vibration that appears in the horizontal axis of the design response spectrum. Starting with the free vibration response, the study proceeds with a comprehensive parametric analysis of the forced vibration response of a wide collection of bilinear isolation systems subjected to pulse and seismic excitations. The study employs Fourier and Wavelet analysis together with a powerful time domain identification method for linear systems known as the Prediction Error Method. When the response history of the bilinear system exhibits a coherent oscillatory trace with a narrow frequency band as in the case of free vibration or forced vibration response from most pulselike excitations, the paper shows that the "effective period" = $T_{eff}$ of the bilinear isolation system is a dependable estimate of its vibration period; nevertheless, the period associated with the second slope of the bilinear system = $T_2$ is an even better approximation regardless the value of the dimensionless strength,$Q/(K_2u_y)=1/{\alpha}-1$, of the system. As the frequency content of the excitation widens and the intensity of the acceleration response history fluctuates more randomly, the paper reveals that the computed vibration period of the systems exhibits appreciably scattering from the computed mean value. This suggests that for several earthquake excitations the mild nonlinearities of the bilinear isolation system dominate the response and the expectation of the design codes to identify a "linear" vibration period has a marginal engineering merit.

동일 주파수 성분의 디젤엔진과 프로펠러 기진력 위상차 규명을 이용한 선박 진동 제어 (Ship Vibration Control Utilizing the Phase Difference Identification of Two Excitation Components with the Same Frequency Generated by Diesel Engine and Propeller)

  • 성혜민;김기선;주원호;조대승
    • 대한조선학회논문집
    • /
    • 제57권3호
    • /
    • pp.160-167
    • /
    • 2020
  • A two-stroke diesel engine and a propeller normally adopted in large merchant ships are regarded as major ship vibration sources. They are directly connected and generate various excitation components proportional to the rotating speed of diesel engine. Among the components, the magnitude of two excitation components with the same frequency generated by both engine and propeller can be compensated by the adjustment of their phase difference. It can be done by the optimization of propeller assembly angle but requires a number of burdensome trials to find the optimal angle. In this paper, the efficient estimation method to determine optimal propeller assembly angle is proposed. Its application requires the axial vibration measurement in sea trial and the numerical vibration analysis for propulsion shafting which can be substituted by additional vibration measurement after one-trial modification of propeller assembly angle. In order to verify the validity of the proposed method, the phase difference between two fifth order excitation components generated by both diesel engine and propeller of a real ship is calculated by the finite element analysis and its result is indirectly validated by the comparison of axial vibration responses at intermediate shaft obtained by the numerical analysis and the measurement in sea trial. Finally, it is numerically confirmed that axial vibration response at intermediate shaft at a resonant speed can be decreased more than 87 % if the optimal propeller assembly angle determined by the proposed method is applied.

Identification of flutter derivatives of bridge decks using stochastic search technique

  • Chen, Ai-Rong;Xu, Fu-You;Ma, Ru-Jin
    • Wind and Structures
    • /
    • 제9권6호
    • /
    • pp.441-455
    • /
    • 2006
  • A more applicable optimization model for extracting flutter derivatives of bridge decks is presented, which is suitable for time-varying weights for fitting errors and different lengths of vertical bending and torsional free vibration data. A stochastic search technique for searching the optimal solution of optimization problem is developed, which is more convenient in understanding and programming than the alternate iteration technique, and testified to be a valid and efficient method using two numerical examples. On the basis of the section model test of Sutong Bridge deck, the flutter derivatives are extracted by the stochastic search technique, and compared with the identification results using the modified least-square method. The Empirical Mode Decomposition method is employed to eliminate noise, trends and zero excursion of the collected free vibration data of vertical bending and torsional motion, by which the identification precision of flutter derivatives is improved.

Matlab을 이용한 축소 모형건물의 시스템 식별과 제어기 설계 (System Identification and Controller Design of a Small-scale Building Structure using Matlab)

  • 민경원;김성춘;황성호;호경찬;정진욱;주석준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.978-983
    • /
    • 2000
  • This paper presents the system identification of a small-scale building model with an active mass driver and the controller design using Matlab program. As the AMD is a mechanical system which has a dynamic characteristic and whose mass can not be neglected compared to that of the building mass, the AMD-building interaction should be included in the controller design. The system identification is carried out for the AMD-building system with two acceleration inputs of the shaking table and the AMD and single acceleration output of the building. The mathematical model for the AMD-building is obtained and compared with the experimental result. The controller is designed based on the mathematical model using the optimal control algorithm of LQG strategy. The experimental results are compared with the numerical results. It is shown that both results are in good agreement in the system identification and the controlled responses.

  • PDF

CNN-based damage identification method of tied-arch bridge using spatial-spectral information

  • Duan, Yuanfeng;Chen, Qianyi;Zhang, Hongmei;Yun, Chung Bang;Wu, Sikai;Zhu, Qi
    • Smart Structures and Systems
    • /
    • 제23권5호
    • /
    • pp.507-520
    • /
    • 2019
  • In the structural health monitoring field, damage detection has been commonly carried out based on the structural model and the engineering features related to the model. However, the extracted features are often subjected to various errors, which makes the pattern recognition for damage detection still challenging. In this study, an automated damage identification method is presented for hanger cables in a tied-arch bridge using a convolutional neural network (CNN). Raw measurement data for Fourier amplitude spectra (FAS) of acceleration responses are used without a complex data pre-processing for modal identification. A CNN is a kind of deep neural network that typically consists of convolution, pooling, and fully-connected layers. A numerical simulation study was performed for multiple damage detection in the hangers using ambient wind vibration data on the bridge deck. The results show that the current CNN using FAS data performs better under various damage states than the CNN using time-history data and the traditional neural network using FAS. Robustness of the present CNN has been proven under various observational noise levels and wind speeds.

Optimal sensor placements for system identification of concrete arch dams

  • Altunisik, Ahmet Can;Sevim, Baris;Sunca, Fezayil;Okur, Fatih Yesevi
    • Advances in concrete construction
    • /
    • 제11권5호
    • /
    • pp.397-407
    • /
    • 2021
  • This paper investigates the optimal sensor placements and capabilities of this procedure for dynamic characteristics identification of arch dams. For this purpose, a prototype arch dam is constructed in laboratory conditions. Berke arch dam located on the Ceyhan River in city of Osmaniye is one of the highest arch dam constructed in Turkey is selected for field verification. The ambient vibration tests are conducted using initial candidate sensor locations at the beginning of the study. Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are used to extract experimental dynamic characteristics. Then, measurements are repeated according to optimal sensor locations of the dams. These locations are specified using the Effective Independence Method. To determine the optimal sensor locations, the target mode shape matrices which are obtained from ambient vibration tests of the selected dam with a large number of accelerometers are used. The dynamic characteristics obtained from each ambient vibrations tests are compared with each other. It is concluded that the dynamic characteristics obtained from initial measurements and those obtained from a limited number of sensors are compatible with each other. This situation indicates that optimal sensor placements determined by the Effective Independence Method are useful for dynamic characteristics identification of arch dams.