• Title/Summary/Keyword: Vibration Gradient

Search Result 214, Processing Time 0.026 seconds

Viscous fluid induced vibration and instability of FG-CNT-reinforced cylindrical shells integrated with piezoelectric layers

  • Bidgoli, Mahmood Rabani;Karimi, Mohammad Saeed;Arani, Ali Ghorbanpour
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.713-733
    • /
    • 2015
  • In this paper, viscous fluid induced nonlinear free vibration and instability analysis of a functionally graded carbon nanotube-reinforced composite (CNTRC) cylindrical shell integrated with two uniformly distributed piezoelectric layers on the top and bottom surfaces of the cylindrical shell are presented. Single-walled carbon nanotubes (SWCNTs) are selected as reinforcement and effective material properties of FG-CNTRC cylindrical shell are assumed to be graded through the thickness direction and are estimated through the rule of mixture. The elastic foundation is modeled by temperature-dependent orthotropic Pasternak medium. Considering coupling of mechanical and electrical fields, Mindlin shell theory and Hamilton's principle, the motion equations are derived. Nonlinear frequency and critical fluid velocity of sandwich structure are calculated based on differential quadrature method (DQM). The effects of different parameters such as distribution type of SWCNTs, volume fractions of SWCNTs, elastic medium and temperature gradient are discussed on the vibration and instability behavior of the sandwich structure. Results indicate that considering elastic foundation increases frequency and critical fluid velocity of system.

Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions

  • Alimirzaei, S.;Mohammadimehr, M.;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.485-502
    • /
    • 2019
  • In this research, the nonlinear static, buckling and vibration analysis of viscoelastic micro-composite beam reinforced by various distributions of boron nitrid nanotube (BNNT) with initial geometrical imperfection by modified strain gradient theory (MSGT) using finite element method (FEM) are presented. The various distributions of BNNT are considered as UD, FG-V and FG-X and also, the extended rule of mixture is used to estimate the properties of micro-composite beam. The components of stress are dependent to mechanical, electrical and thermal terms and calculated using piezoelasticity theory. Then, the kinematic equations of micro-composite beam using the displacement fields are obtained. The governing equations of motion are derived using energy method and Hamilton's principle based on MSGT. Then, using FEM, these equations are solved. Finally the effects of different parameters such as initial geometrical imperfection, various distributions of nanotube, damping coefficient, piezoelectric constant, slenderness ratio, Winkler spring constant, Pasternak shear constant, various boundary conditions and three material length scale parameters on the behavior of nonlinear static, buckling and vibration of micro-composite beam are investigated. The results indicate that with an increase in the geometrical imperfection parameter, the stiffness of micro-composite beam increases and thus the non-dimensional nonlinear frequency of the micro structure reduces gradually.

Vibration characteristics of functionally graded carbon nanotube-reinforced composite double-beams in thermal environments

  • Zhao, Jing-Lei;Chen, Xu;She, Gui-Lin;Jing, Yan;Bai, Ru-Qing;Yi, Jin;Pu, Hua-Yan;Luo, Jun
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.797-808
    • /
    • 2022
  • This paper presents an investigation on the free vibration characteristics of functionally graded nanocomposite double-beams reinforced by single-walled carbon nanotubes (SWCNTs). The double-beams coupled by an interlayer spring, resting on the elastic foundation with a linear layer and shear layer, and is simply supported in thermal environments. The SWCNTs gradient distributed in the thickness direction of the beam forms different reinforcement patterns. The materials properties of the functionally graded carbon nanotube-reinforced composites (FG-CNTRC) are estimated by rule of mixture. The first order shear deformation theory and Euler-Lagrange variational principle are employed to derive the motion equations incorporating the thermal effects. The vibration characteristics under several patterns of reinforcement are presented and discussed. We conducted a series of studies aimed at revealing the effects of the spring stiffness, environment temperature, thickness ratios and carbon nanotube volume fraction on the nature frequency.

Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects

  • Huang, Xiaoping;Shan, Huafeng;Chu, Weishen;Chen, Yongji
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.101-115
    • /
    • 2022
  • Some researchers pointed out that the nonlocal cantilever models do not predict the dynamic softening behavior for nanostructures (including nanobeams) with clamped-free (CF) ends. In contrast, some indicate that the nonlocal cantilever models can capture the stiffness softening characteristics. There are substantial differences on this issue between them. The vibration analysis of porosity-dependent functionally graded nanoscale tubes with variable boundary conditions is investigated in this study. Using a modified power-law model, the tube's porosity-dependent material coefficients are graded in the radial direction. The theory of nonlocal strain gradients is used. Hamilton's principle is used to derive the size-dependent governing equations for simply-supported (S), clamped (C) and clamped-simply supported (CS). Following the solution of these equations by the extended differential quadrature technique, the effect of various factors on vibration issues was investigated further. It can be shown that these factors have a considerable effect on the vibration characteristics. It also can be found that our numerical results can capture the unexpected softening phenomena for cantilever tubes.

Nonlinear free vibration analysis of functionally graded carbon nanotube reinforced fluid-conveying pipe in thermal environment

  • Xu, Chen;Jing-Lei, Zhao;Gui-Lin, She;Yan, Jing;Hua-Yan, Pu;Jun, Luo
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.641-652
    • /
    • 2022
  • Fluid-conveying tubes are widely used to transport oil and natural gas in industries. As an advanced composite material, functionally graded carbon nanotube-reinforced composites (FG-CNTRC) have great potential to empower the industry. However, nonlinear free vibration of the FG-CNTRC fluid-conveying pipe has not been attempted in thermal environment. In this paper, the nonlinear free vibration characteristic of functionally graded nanocomposite fluid-conveying pipe reinforced by single-walled carbon nanotubes (SWNTs) in thermal environment is investigated. The SWCNTs gradient distributed in the thickness direction of the pipe forms different reinforcement patterns. The material properties of the FG-CNTRC are estimated by rule of mixture. A higher-order shear deformation theory and Hamilton's variational principle are employed to derive the motion equations incorporating the thermal and fluid effects. A two-step perturbation method is implemented to obtain the closed-form asymptotic solutions for these nonlinear partial differential equations. The nonlinear frequencies under several reinforcement patterns are presented and discussed. We conduct a series of studies aimed at revealing the effects of the flow velocity, the environment temperature, the inner-outer diameter ratio, and the carbon nanotube volume fraction on the nature frequency.

Nonlocal Mindlin plate theory with the application for vibration and bending analysis of nanoplates with the flexoelectricity effect

  • Pham Ba Khien;Du Dinh Nguyen;Abdelouahed Tounsi;Bui Van Tuyen
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.27-40
    • /
    • 2024
  • This work is the first of its kind to integrate Mindlin's theory with analytical methods in order to produce an exact solution to a specific vibration issue as well as a bending problem involving a nanoplate that is supported by a viscoelastic foundation. The plate is exposed to the simultaneous effects of a compressive load in the plate plane and a force operating perpendicular to the plane of the nanoplate. In addition, the flexoelecity effect is included into the plate. The strain gradient component is taken into consideration while calculating the plate equilibrium equation using the nonlocal theory and Hamilton's principle. The free vibration and static responses of the nanoplate seem to be both real and imaginary components because of the appearance of the viscoelastic drag coefficient of the viscoelastic foundation. This study also shows that when analyzing the mechanical response for nanostructure, taking into account the flexoelectricity effect and the influence of the nonlocal parameter, the results will be completely different from the case in which this parameter is ignored. This indicates that it is vital to take into consideration the effects of nonlocal parameters on the nanosheet structure while also taking into consideration the effect of flexoelectricity.

Study on Fault Diagnosis and Data Processing Techniques for Substrate Transfer Robots Using Vibration Sensor Data

  • MD Saiful Islam;Mi-Jin Kim;Kyo-Mun Ku;Hyo-Young Kim;Kihyun Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.45-53
    • /
    • 2024
  • The maintenance of semiconductor equipment is crucial for the continuous growth of the semiconductor market. System management is imperative given the anticipated increase in the capacity and complexity of industrial equipment. Ensuring optimal operation of manufacturing processes is essential to maintaining a steady supply of numerous parts. Particularly, monitoring the status of substrate transfer robots, which play a central role in these processes, is crucial. Diagnosing failures of their major components is vital for preventive maintenance. Fault diagnosis methods can be broadly categorized into physics-based and data-driven approaches. This study focuses on data-driven fault diagnosis methods due to the limitations of physics-based approaches. We propose a methodology for data acquisition and preprocessing for robot fault diagnosis. Data is gathered from vibration sensors, and the data preprocessing method is applied to the vibration signals. Subsequently, the dataset is trained using Gradient Tree-based XGBoost machine learning classification algorithms. The effectiveness of the proposed model is validated through performance evaluation metrics, including accuracy, F1 score, and confusion matrix. The XGBoost classifiers achieve an accuracy of approximately 92.76% and an equivalent F1 score. ROC curves indicate exceptional performance in class discrimination, with 100% discrimination for the normal class and 98% discrimination for abnormal classes.

Thermal Stability Analysis of 2-D Spacecraft Appendage (위성체 2-D 구조물의 열 안정성 해석)

  • 윤일성;송오섭;김규선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.99-104
    • /
    • 2001
  • Thermally induced vibration response of solar array is investigated. The solar array model consists of composite thin walled beam and solar blanket, spreader bar. The composite thin walled beam incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. The solar blanket is a membrane subjected to uniform tension in the z direction. The spreader bar is a rigid member. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated. A stability criterion given in parameters for establishes the conditions for thermal flutter.

  • PDF

A Basic Experimental Study on the Squeak Noise Using the Pin-on-disk (Pin-on-disk를 이용한 기초 마찰소음 실험 연구)

  • Nam, Jae-Hyun;Kang, Jae-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.736-741
    • /
    • 2012
  • Squeak noise is studied by using the pin-on-disk system with aluminum pin and steel disk. Noise induced by friction is measured with respect to the normal loads and sliding speeds. The negative slope of friction-velocity curve is seen when the squeak noise occurs. It is found that the normal load influences on the sound level of squeak noise. From the hammering test, the major frequency of the squeak noise is shown to correspond to one of system modes, which implies that squeak phenomenon arises from the unstable system modes. The result of FE analysis shows that the major squeak mode is the bending mode of the pin.

Optimal Design of a Muffler with Perforated Plates Considering Pressure Drop (압력 강하를 고려한 머플러 천공판 최적설계)

  • Choi, Dong Wook;Lee, Jin Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.372-378
    • /
    • 2013
  • An acoustical shape optimization problem is formulated for optimal design of a perforated reactive muffler with offset inlet/outlet. The mean transmission loss value in a target frequency range is maximized for an allowed pressure drop value between an inlet and an outlet. Partitions in the chamber are divided into several sub-partitions, whose lengths are selected as design variables. Each sub-partition has the same number of holes, whose sizes are equal. A finite element model is employed for acoustical and flow analyses. A gradient-based optimization algorithm is used to obtain an optimal muffler. The acoustical and fluidic characteristics of the optimal muffler are compared with those of a reference muffler. Validation experiment is carried out to support the effectiveness of our suggested method.