• Title/Summary/Keyword: Vibration Displacement

Search Result 1,645, Processing Time 0.031 seconds

Estimation of displacement responses of a suspension bridge by using mode decomposition technique (모드분해기법을 이용한 현수교의 변위응답추정)

  • Chang, Sung-Jin;Kim, Nam-Sik;Kim, Ho-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.320-325
    • /
    • 2009
  • In this study, a method to estimate the suspension bridge deflection is developed using mode decomposition technique. In order to examine the suspension bridge stability against these dynamic loadings, the prediction of displacement response is very important to evaluate bridge stability. However, it is recognized that any measurement of movement for suspension bridges may be difficult for the absence of proper methods to measure the displacement response on site. This study aims at suggesting a method to estimate the displacement response from the measured strain signals in an indirect way to predict the displacement response, not a direct way to measure the displacement response. Additionally, by applying the FBG sensors with multi-point measurements not influenced by electric noise, it can be expected that the technique would be applicable to infrastructures.

  • PDF

Prediction of operational strains using displacement-strain transformation matrix and its application (변위-변형율 변환행렬을 이용한 운전중 변형율 예측 및 응용)

  • 서순우;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.355-360
    • /
    • 1996
  • When the operational strains of a structure can not be directly measured in order to predict the life of the structure due to the problem of the attachment, those must be obtained indirectly. Since the displacement and the strain are interrelated, the strain can be predicted from the measured displacement and displacement-strain transformation matrix. The transformation matrix is dependent on the boundary condition, unfortunately, and it is also difficult to know exactly that of the operational system. In this study, for the structure with arbitrary boundary condition under the operation, the approximate method is proposed in order to predict the operational strains using the transformation matrix obtained by using free boundary conditions. And the method is applied to predict the strains of leads of surface mount component under the vibration of the printed circuit board.

  • PDF

Dynamic stiffness matrix of composite box beams

  • Kim, Nam-Il
    • Steel and Composite Structures
    • /
    • v.9 no.5
    • /
    • pp.473-497
    • /
    • 2009
  • For the spatially coupled free vibration analysis of composite box beams resting on elastic foundation under the axial force, the exact solutions are presented by using the power series method based on the homogeneous form of simultaneous ordinary differential equations. The general vibrational theory for the composite box beam with arbitrary lamination is developed by introducing Vlasov°Øs assumption. Next, the equations of motion and force-displacement relationships are derived from the energy principle and explicit expressions for displacement parameters are presented based on power series expansions of displacement components. Finally, the dynamic stiffness matrix is calculated using force-displacement relationships. In addition, the finite element model based on the classical Hermitian interpolation polynomial is presented. To show the performances of the proposed dynamic stiffness matrix of composite box beam, the numerical solutions are presented and compared with the finite element solutions using the Hermitian beam elements and the results from other researchers. Particularly, the effects of the fiber orientation, the axial force, the elastic foundation, and the boundary condition on the vibrational behavior of composite box beam are investigated parametrically. Also the emphasis is given in showing the phenomenon of vibration mode change.

Cutting Vibration Monitoring using a Spindle Displacement Sensor in Turning (주축 변위 센서를 이용한 선삭 중의 절삭 진동 측정)

  • Kim IlHae;Kim JinHyun;Park Man-Jin;Kim Jong-Hyuk;Yang Hee-Nam;Jang. DongYoung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.5
    • /
    • pp.55-61
    • /
    • 2004
  • Chatter monitoring is also important for realizing an unmanned machining system. while many researches were done on this area, it is still a difficult job to detect very small amplitude amount of chattering. A monitoring system using a capacitive spindle displacement sensor was developed to monitor cutting vibration in turning in this research. The variance of the measured spindle displacement signals using the developed sensor was calculated and utilized to quantify the small vibration in machining. The results were compared with variance obtained using a tool dynamometer. The result showed that the developed system could be utilized in monitoring the subtle changes of cutting vibrations with high sensitivity confidence.

CUTTING VIBRATION MONITORING USING A SPINDLE DISPLACEMENT SENSOR IN TURNING (주축 변위 센서를 이용한 선삭 중의 절삭 진동 측정)

  • 김일해;김진현;장동영
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.516-522
    • /
    • 2003
  • Monitoring chattering is also important for realizing an unmanned machining system While many researches were done on this area, it is still a difficult job to detect very small amplitude amount of chattering. A monitoring system using a capacitive spindle displacement sensor was developed to monitor cutting vibration in turning in this research. The variance of the measured spindle displacement signals using the developed sensor was calculated and utilized to quantity the small vibration in machining. The results were compared with variance obtained using a tool dynamometer. The result showed that the developed system could be utilized in monitoring the subtle changes of cutting vibrations with high sensitivity confidence.

  • PDF

Random Vibration Analysis of Thick Composite Laminated Plate Using Mixed Finite Element Model (1) (혼합유한요소모델을 이용한 두꺼운 복합적층판의 불규칙 진동해석(1)-이론적 고찰)

  • Seok, Keun-Yung;Kang, Joo-Won
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.190-196
    • /
    • 2004
  • Thick composite laminated plates is considered in 3D finite-element. To consider continuity of transverse stresses and displacement field, mixed finite-element has been developed by using layerwise theory and the minimum potential energy principle. Mixed finite-element has been enforced through the thick direction, Z, of a laminated plate by considering six degree-of-freedoms per node. Six degree-of-freedoms are three displacement components in the coordinate axes directions and three transverse stress components ${\sigma}_z,\;{\tau}_{xz},\;{\tau}_{yz}$. The model maintain the fundamental elasticity relations that are stress-strain relation and displacement-strain relation, because the transverse stress components invoked as nodal degrees of freedom by using the fundamental elasticity relationship between th components of stress and displacement. Random vibration analysis of the model is performed by computing consistent mass matrix and computing covariance in frequency domain technique.

  • PDF

Computer Simulation for Design of Minimum Vibration Mount System in Variable Displacement Engine (可變기통 엔진에서의 最小振動 마운트系 設計를 위한 電算시뮬레이션)

  • 이종원;정경열;곽윤근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.305-315
    • /
    • 1986
  • Redesign of the mounting system to minimize vibration of a variable displacement engine through computer simulation is considered. A three degree of freedom model is established for an in-line four-cylinder automobile engine with a three point mounting system. The engine mount locations and angles, and isolator sizes are chosen as design parameters. Constraints on isolator deformations and design parameters are imposed. The gradient projection method is utilized for optimization. Simulation studies show significant vibration reduction can be obtained especially at idling speed.

Integrated Displacement feedback Control of a Self-Levelling System (자기 수평유지 시스템을 위한 변위 적분 피드백제어 연구)

  • Lee, Young-Sup;Shin, Ku-Kyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.504-507
    • /
    • 2005
  • This paper presents a self-levelling system for a mass, which undergoes a severe acceleration, with integrated displacement feedback control. After a general description of such a system, theoretical analysis is investigated to design an active control device. That is, the self levelling system is used to reduce the 'static' deflections while isolating the 'dynamic' vibration. A computer simulation model of 45 kg with two air spring mounts is considered to predict the performance of the control system. The results showed the controller can reduce the mass's displacement to the level of 1/3-1/5. Thus the self-levelling system can be applied usefully to reduce the dispalcement of a mass which experiences a high g dynamics.

  • PDF

A Study on the Field Application of the Measurement Technique for Static Displacement of Bridge Using Ambient Vibration (상시 진동을 이용한 교량 정적 처짐 산정 기술의 현장 적용성 연구)

  • Sang-Hyuk Oh;Dae-Joong Moon;Kwang-Myong Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In safety assessment of a aged bridge, dynamic characteristics and displacement are directly related to the rigidity of the structural system, especially displacement is the most important factor as the physical quantity that the bridge user can directly detect. However, in order to measure the displacement of the bridge, it is difficult to install displacement sensors at the bottom of the bridge and conduct traffic blocking and loading tests, resulting in increased costs or impossible measurements depending on the bridge's environment. In this study, a method of measuring the displacement of a bridge using only accelerometers without installing displacement sensors and ambient vibration without a loading test was proposed. For the analysis of bridge dynamic characteristics and displacement using ambient vibration, the mode shape and natural frequency of the bridge were extracted using a TDD technique known to enable quick analysis with simple calculations, and the unit load displacement of the bridge was analyzed through flexibility analysis to calculate static displacement. To verify this proposed technology, an on-site test was conducted on C Bridge, and the results were compared with the measured values of the loading test and the structural analysis data. As a result, it was confirmed that the mode shape and natural frequency were 0.42 to 1.13 % error ratio, and the maximum displacement at the main span was 3.58 % error ratio. Therefore, the proposed technology can be used as a basis data for indirectly determine the safety of the bridge by comparing the amount of displacement compared to the design and analysis values by estimating the displacement of the bridge that could not be measured due to the difficulty of installing displacement sensors.

Active Vibration Control of Multi-Mode Forced Vibration Using PPF Control Technique (PPF 제어기법을 이용한 다중 모드 강제 진동의 능동 진동 제어)

  • 한상보;곽문규;윤신일
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.1007-1013
    • /
    • 1997
  • This paper presents active vibration control scheme of multi-mode forced vibration using piezocetamic sensors and actuators. The control scheme adopted is the Positive Position Feedback (PPF) control. Among various vibration control techniques. PPF control technique makes use of generalized displacement measurements to accomplish the vibration suppression. Two independent controllers are implemented to control the first and the second modes of the beam under external excitation. Experimental results for various damping ratios and feedback gains of the PPF controllers are compared with respect to the contorl efficiency. The results indicate that steady state vibration under wide band excitation can be controlled effectively when multiple sets of PZT sensors and actuators were used with PPF control technique.

  • PDF