• Title/Summary/Keyword: Vibration Amplitude

Search Result 1,037, Processing Time 0.028 seconds

Experimental and Analytical Study of a Cooling Mechanism Using Acoustic Streaming by Ultrasonic Vibrations (초음파진동에 의한 음향유동을 활용한 냉각 메카니즘의 실험 및 이론적 연구)

  • Loh, Byoung-Gook;Lee, Dong-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.9
    • /
    • pp.694-702
    • /
    • 2003
  • A cooling mechanism using acoustic streaming by ultrasonic vibrations and associated convective heat transfer enhancement is investigated experimentally and analytically. Acoustic streaming pattern and associated heat transfer characteristics are presented. Analytical transient temperature profile of the heated plate following Nyborgs theory is accomplished along with experimental measurement. A temperature drop of 30 C is obtained in 4 minutes with vibration amplitude of 10${\mu}{\textrm}{m}$. As the vibration amplitude is further increased to 25${\mu}{\textrm}{m}$ a temperature drop of 40 C is achieved that is the maximum temperature drop obtained with the current experimental apparatus. Analytical heat transfer solutions verified a temperature drop of 4$0^{\circ}C$ with a vibration amplitude of 25${\mu}{\textrm}{m}$ at 28.4 kHz which is experimentally obtained.

Effect of the Tolerance Parameters of the Horn on the Vibration of the Thermosonic Transverse Bonding Flip Chip System (횡 방향 플립 칩 초음파 접합 시 혼의 공차변수가 시스템의 진동에 미치는 영향)

  • Jung, Ha-Kyu;Kwon, Won-Tae;Yoon, Byung-Ok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.116-121
    • /
    • 2009
  • Thermosonic flip chip bonding is an important technology for the electronic packaging due to its simplicity, cost effectiveness and clean and dry process. Mechanical properties of the horn and the shank, such as the natural frequency and the amplitude, have a great effect on the bonding capability of the transverse flip chip bonding system. In this research, two kinds of study are performed. The first is the new design of the clamp and the second is the effect of tolerance parameters to the performance of the system. The clamp with a bent shape is newly designed to hold the nodal point of the flip chip. The second is the effect of the design parameters on the vibration amplitude and planarity at the end of the shank. The variation of the tolerance parameters changes the amplitude and the frequency of the vibration of the shank. They, in turn, have an effect on the quantity of the plastic deformation of the gold ball bump, which determined the quality of the flip chip bonding. The tolerance parameters that give the great effect on the amplitude of the shank are determined using Taguchi's method. Error of set-up angle, the length and diameter of horn and error of the length of the shank are determined to be the parameters that have peat effect on the amplitude of the system.

Spatial correlation of aerodynamic forces on 5:1 rectangular cylinder in different VIV stages

  • Lei, Yongfu;Sun, Yanguo;Zhang, Tianyi;Yang, Xiongwei;Li, Mingshui
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.81-90
    • /
    • 2022
  • To better understand the vortex-induced vibration (VIV) characteristics of a 5:1 rectangular cylinder, the distribution of aerodynamic force and the non-dimensional power spectral density (PSD) of fluctuating pressure on the side surface were studied in different VIV development stages, and their differences in the stationary state and vibration stages were analyzed. The spanwise and streamwise correlations of surface pressures were studied, and the flow field structure partitions on the side surface were defined based on the streamwise correlation analysis. The results show that the variation tendencies of mean and root mean square (RMS) pressure coefficients are similar in different VIV development stages. The RMS values during amplitude growth are larger than those at peak amplitude, and the smallest RMS values are observed in the stationary state. The spanwise correlation coefficients of aerodynamic lifts increase with increase of the peak amplitude. However, for the lock-in region, the maximum spanwise correlation coefficient for aerodynamic lifts occurs in the VIV rising stage rather than in the peak amplitude stage, probably due to the interaction of vortex shedding force (VSF) and self-excited force (SEF). The streamwise correlation results show that the demarcation point positions between the recirculation region and the main vortex region remain almost constant in different VIV development stages, and the reattachment points gradually move to the tailing edge with increasing amplitude. This study provides a reference to estimate the demarcation point and reattachment point positions through streamwise correlation and phase angle analysis from wind tunnel tests.

Amplitude dependent damping ratio of domestic tall building by RD method (국내 고층건물의 RD법에 의한 감쇠율의 진폭의존성)

  • Yoon, Sung-Won
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.89-95
    • /
    • 2004
  • The measured damping ratio was analysed to obtain amplitude dependence. Wind-induced vibration of 20 story steel-framed building was measured to investigate amplitude dependence by RD method. Micro-tremo vibrations of 20 RC bearing wall typed buildings were performed to analysis the amplitude dependence by formula proposed by Tamua and ESDU. Amplitude dependent damping in 17 story steel-framed building was showed clearly in the increasing rate of 9%. But Amplitude dependent damping of 17 RC bearing wall typed buildings was very low in the increasing rate of 2.5%. The tendency of dynamic properties of building obtained here are useful for the validation of dynamic properties of buildings in the evaluation of serviceability.

  • PDF

Analysis element in influenced spindle vibration of high-speed processing machine (고속 가공기의 스핀들 진동에 영향을 주는 요소 분석)

  • 최영호;윤두표;김광영;최병오
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.340-345
    • /
    • 2001
  • In this paper, We have studied on the critical vibration limits of spindle unit for the high speed ball pen tip processing machine. The vibration of bearing can be measured by FFT, and the influence of vibration amplitude due to the Unbalance, bearing deflect, bite and timing belts tension are analyzed. So, the critical vibration limits of spindle is determined by the X, Z directional vibration of spindle Unit.

  • PDF

The Vibration of Power Lines due to Corona in the Rainy Environments (우중 Corona에 의한 전선의 진동)

  • Joon Hyun Kim
    • 전기의세계
    • /
    • v.21 no.4
    • /
    • pp.22-26
    • /
    • 1972
  • The vibration of power lines in rainy environments was researched using the concentric cylindrical gap to which D.C. voltage was applied. Consequently, it has been solidly conformed that the vibration of power lines begins at threshold voltage of corona, and that the amplitude of the vibration increases as the numbers of falling water drop per unit time increase. The vibration phenomen take place in straight line, elliptic or circular motion as voltage is applied the numbers of vibration nearay accord with the elastic vibrarion theory.

  • PDF

Amplitude Effect on the Resonance of Natural Convection inside a Square Cavity with a Vibrating Bottom Wall (사각 공동구의 하부 벽면 가진의 진폭 변화에 따른 자연 대류 유동의 공진 현상에 관한 연구)

  • Hur N.;Kim W.;Kim Y.;Kang B. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.66-71
    • /
    • 2000
  • In the present study a numerical simulation is performed on a natural convection inside a square cavity with a vibrating bottom wall. The heat transfer coeffcients for various amplitudes of the bottom wall vibration were compared to the case without the bottom wall excitation. From the results, it is seen that the local temperature distribution in a cavity becomes more uniform as the amplitude of the bottom wall vibration is increased. Also, it was seen that the heat transfer coefficient increased on the heating wall as the applied amplitude increased.

  • PDF

Impulse Response Analysis of an Amplitude Proportional Friction Damper System (변위비례식 마찰댐퍼 시스템의 임펄스 가진 응답해석)

  • 최명진;박동훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.5
    • /
    • pp.377-384
    • /
    • 2004
  • An Amplitude Proportional Friction Damper (APFD), in which the friction force is proportional to the system displacement, has been introduced and mathematically modeled. To understand the damping characteristics of APFD, analytical solutions for the impulse response has been derivedand compared to the viscous damper. It is found that APFD system has very similar damping characteristics to viscous damper even though it is a friction damper. APFD may be used as a cost-effective substitution for the viscous damper and could also be used to improve the simple friction or Coulomb dampersince APFD works with no stick-slip and always returns to original position when external disturbance is disappeared.

A Study on Dynamic Behavior of a Rotor-Bearing System Under External Disturbances (외란을 받는 축-베어링 시스템의 동적 거동에 대한 연구)

  • Rho, Byoung-Hoo;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.9-15
    • /
    • 2002
  • The nonlinear vibration characteristics of hydrodynamic journal bearings with a circumferential groove we analyzed numerically when the external sinusoidal disturbances are given to the rotor-bearing system continuously. Furthermore, a cavitation algorithm, implementing the Jakobsson-Floberg-Olsson boundary condition, is adopted to predict cavitation regions in a fluid film more accurately than the conventional analysis. which uses the Reynolds boundary condition. It is found that the difference between linear and nonlinear analysis is much more remarkable as the amplitude of external disturbance increases, and it depends upon the excitation frequency of the external disturbance. It is also shown that the cavity region in the fluid film increases as the amplitude or excitation frequency of the external disturbance increases. The whirling center of the steady state orbit moves closer to the bearing center as the amplitude or excitation frequency of the external disturbance increases.