• Title/Summary/Keyword: Vibration Acceleration Level

Search Result 172, Processing Time 0.022 seconds

Vibration Characteristics of Corrugated Fiberboard Boxes for Packages of Pears (배 골판지 포장상자의 진동특성)

  • 김만수;정현모
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.391-398
    • /
    • 2002
  • During handling unitized products, they are subjected to a variety of environmental hazards. Shock and vibration hazards are generally considered the most damaging of the environmental hazards on a product and it may encounter while passing through the distribution environment. A major cause of shock damage to products is drops during manual handling. The increasing use of unitization of pallets has been resulted in a reduction of the shock hazards. This has caused an increasing interest in research focused on vibration caused dam age. Damage to the product by the vibration most often occurs when a product or a product component has a natural frequency that falls within the range of the forcing frequencies of the particular mode of transportation being used. Transportation vibration is also a major cause of fruit and vegetable quality loss due to mechanical damage. This study was conducted to determine the vibration characteristics of the corrugated fiberboard bones for packages of pears, and to investigate the degree of vibration injury of the pears in the boxes during the simulated transportation environment. The vibration tests were performed on an electrohydraulic vibration exciter. The input acceleration to exciter was fixed at 0.25 G for a single container resonance test and 0.5 G for the vertical stacked container over the frequency range from 3 to 100 Hz. Function generator (HP-33120A) was connected by wire to the vibration exciter for controlling the input acceleration at a continuous logarithmic sweep rate of 1.0 octave per min. The peak frequency and acceleration on the single box test were 22.02 Hz, 1.5425 G respectively, and these values on the vertical stacked boxes were observed from the bottom box 19.02, 18.14, 16.62 and 15.40 Hz and 2.2987, 3.7654. 5.6087, and 7.9582 G, respectively. The pear in the bottom box had a slightly higher damage level than the fruit packed in the other stacked boxes. It is desirable that the package and transportation system has to be so designed that 15∼20 Hz frequency will not occur during the transportation environment.

A Study on the Safety and Usability of University Dormitory Buildings (대학 기숙사 건물의 안전성 및 사용성 평가 연구)

  • Chae, Kyoung-Hun;Heo, Seok-Jae;Hur, Moo-Won
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.26 no.2
    • /
    • pp.3-10
    • /
    • 2019
  • This study evaluated the vibration use and safety of students living in the dormitories on the 12th and 14th floors by feeling uncomfortable. The measurement method was to measure the acceleration due to free vibration and single - person walking. The slab stiffness was then calculated, and the usability and safety were compared according to international standards. The natural frequency of the slab was 6.8 Hz. The natural frequency of a typical slab is around 15Hz. Therefore, the evaluation slab is judged as a flexible floor structure. It is considered that there is a high possibility of resonance in the middle of daily life because of low natural frequency and near harmonic component of walking vibration. As a result, the RMS acceleration level is within the tolerance range defined by ISO 10137 code, but the 13th floor exceeds the reference limit, so that a sensitive person could detect the vibration somewhat in the lying position.

Noise and Vibration Characteristics by Heavy-weight Floor Impact (중량바닥충격에 의한 소음 및 진동 특성)

  • 서상호;송희수;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.919-922
    • /
    • 2003
  • The correlation between noise and vibration by a heavy-weight floor impact was studied. The triggering technique was used for increasing the reliability and stability to measure the level of sound pressure, sound intensity and vibration acceleration. The simple finite element and rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The result show that the isolation material adapted to reduce the light-weight floor impact noise, causing the natural frequency lower, make resonance with dominant driving frequency, and increase the noise level very sharply. Therefore the noise level Peak in the region of low frequency, below 63Hz, would be related with the natural frequencies of the floor system.

  • PDF

Wind Induced Vibration Design for High-rise buildings through Control of Natural Period (주기 조절을 이용한 고층 건물의 풍응답 조절 설계)

  • 김지은;차성희;서지현;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.43-51
    • /
    • 2004
  • As the slenderness ratio of a high-rise building increases, the lateral load resisting system for the building is more often determined by serviceability design criteria. In serviceability design, the maximum drift and the level of vibration are controlled not to exceed the design criteria. Even though many drift method have been developed in various forms, no practical design method for wind induced vibration has been developed so far. Structural engineers rely upon heuristic or experience in designing wind induced vibration. Development of practical design method for wind induced vibration is required. Generally, wind induced acceleration responses are depending on several variables such as the weight density of a building, damping ratio, the natural period, and etc.. All parameters except the natural period or frequency are usually out of reach for structural engineers, then the wind acceleration response may be proportioned to the natural period. Therefore, in this paper, a wind induced vibration design method based on frequency control technique for high-rise is proposed. The method is applied to vibration design of a 25-story office building for performance evaluation.

  • PDF

Serviceability Performance Evaluation of Vertical Vibration of Waflle Shape and Duble-Tee Precast Concrete Slabs (와플형과 더블티형 프리캐스트 콘크리트 바닥판의 수직진동 사용성 평가)

  • Shin, Jae-Sang;Chung, Lan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.62-69
    • /
    • 2010
  • In this study, the serviceability performance of Waffle Shaped(WAS) and Double-Tee(DT) precast concrete slabs were evaluated and compared based on the vertical acceleration magnitude induced by walking and heel drop loads. Tests were conducted for practical building structures of which floor systems used WAS and DT slabs. Natural frequencies of the slabs were similar to those obtained by using analytical models. The measured acceleration level was evaluated by vertical floor acceleration criteria presented by ISO-2631, AIJ(1991, Japan) and a previous study regarding floor vibration limit. Test results showed that both WAS and DT slabs satisfied all the criteria and Peak acceleration level of WA slabs was lower than that of DT slabs.

Evaluation of Hand-Arm Vibration Exposure Level and Work Environment Satisfaction of Workers in Automobile Manufacturer Assembly Process (자동차 제조업체 조립공정 근로자의 국소진동 노출 수준 및 작업환경 만족도 평가)

  • Seong-Hyun Park;Mo-Yeol Kang;Seung Won Kim;Sangjun Choi
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.103-114
    • /
    • 2023
  • Objectives: This study was conducted to evaluate hand-arm vibration (HAV) exposure levels due to the use of power hand tools and to evaluate the determinants in the automobile assembly process. Methods: The exposure level to HAV was evaluated for 30 work lines in five assembly processes (body, engine, chassis, door, and design) that use air-powered tools and battery-powered tools and operate in circulation for two hours. The 2-hr equivalent energy vibration acceleration, A (2), of the task was measured. The 8-hr equivalent energy vibration acceleration, A (8), was estimated in consideration of the number of tasks that can be performed per day by each process. In addition, a survey on the working environment was conducted with workers exposed to vibration. Results: The geometric mean of the HAV exposure level, A (2), for a total of 30 tasks was 2.51 m/s2, and one case was 10.30 m/s2, exceeding TLV (2hr). The HAV exposure level of A (8) was evaluated from 1.03 m/s2 to 5.36 m/s2. A (2) showed a statistically significant difference (P<0.01) for each process, and the chassis process (GM=3.90 m/s2) was the highest. The larger the tool size and the longer the tool length, the higher was the vibration acceleration when using a battery-powered tool than an air-powered tool (P<0.01). Battery-powered tool users showed higher dissatisfaction on all items than did air-powered tool users. Conclusions: As a result of this study, it is necessary to implement a program to reduce the HAV exposure levels.

Estimation for Dynamic Deformation of the Cushioning Materials of Packaging for the Pears by Shock and Vibration During Transportation (유통 중 진동충격에 의한 배 포장 완충재의 동적 변위 추정)

  • Jung, Hyun-Mo;Park, In-Sig;Kim, Man-Soo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.11 no.1
    • /
    • pp.17-24
    • /
    • 2005
  • During handling unitized products, they are subjected to a variety environmental hazards. Shock and vibration hazards are generally considered the most damaging of the environmental hazards on a product, and it may encounter while passing through the distribution environment. A major cause of shock damage to products is drops during manual handling. The increasing use of unitization on pallets has been resulted in a reduction in the manual handling of products and with it a reduction in the shock hazards. This has caused and increasing interest in research focused on vibration caused damage. the use of pallets as a base for unitizing loads, aids in the mechanical handling, transportation and storage of products. Besides aiding in the handling, transportation and storage of products, a pallet also acts on and interface between the packaged goods and the distribution environment. The determination of the impact deformation of the cushioning materials such as tray cup (polymeric foam) and corrugated fiberboard pad must be carried out to design the proper packaging system providing adequate protection for the fruit, and to understand the complex interaction between the components of fruit when they relate to expected transportation vibration inputs. In this study, the theoretical analysis of impact deformation for cushioning materials by dynamic vibration. The impact deformations of SW and DW corrugated fiberboard pad in acceleration amplitudes of 0.25 G-rms and 0.5 G-rms that were usually generated in transport vehicles during distribution environments were very small compare with the thickness of corrugated fiberboard pad. The maximum of vibration acceleration level of tray cup by vibration impact was about 3.2 G-rms. The theoretical allowable acceleration (G-factor) of the pear was 0.7102 G-rms, and the maximum dynamic deformation estimated within G-factor was about 1 mm.

  • PDF

Vibration Analysis for Car Installed Transverse Engine Through Experimetal Method (실험적 방법을 통한 횡 탑재 엔진 차량에 대한 진동 해석)

  • 양성모;김남응;김중희
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.769-777
    • /
    • 1999
  • Research on vibration of a vehicle with a transversely mounted 4-cylinder engine was performed using a vector synthesis method, Data of the engine vibration for the vector synthesis method was obtained experimentally and the data was ODS-fitted to calculate vibration level on any engine location assuming that the engine is rigid body in the frequency range of interest. In order to derive the excitation force on the vehicle body, the displacements were converted from the acceleration of engine. The transfer functions from engine mounts to toe pan on the floor were obtained experimentally. The vibration level on the toe pan was predicted by multiplying the excitation force by the transfer function. The predicted vibration level was compared with experimental data and the result was reasonable. Using the developed method, analysis was made for the effect of body fixture conditions of the vehicle when testing the engine vibration and for the effect of the transfer functions when the engine is installed or when the engine is removed. Finally the degree of contribution for 12 transfer paths was calculated.

  • PDF

Noise and Vibration Characteristics of Concrete Floor Structures Using Resilient Materials Driven by Standard Heavy Impact Source (완충재 유무에 따른 표준중량충격원에 의한 콘크리트 바닥 구조의 소음 및 진동 특성)

  • 송희수;전진용;서상호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.661-667
    • /
    • 2004
  • The characteristics of noise and vibration by a heavy impact source was studied. The triggering method was used for increasing the reliability and stability to measure the level of sound pressure. sound intensity and vibration acceleration. A simple finite element model and a rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The results show that the resilient materials decrease the natural frequency of the reinforced concrete slab, make a resonance with dominant driving frequency in the low frequency region, and increase the vibration and noise level. A simple finite element model and rigid body models was suggested to calculate the natural frequencies of the floor systems.

Indirect Measurement of Dynamic Characteristic and Structureborne Sound Source Level for Installed Machine (탑재장비 동적특성 및 고체음 세기의 간접 측정)

  • 김상현;정의봉
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.727-733
    • /
    • 1996
  • Machines installed in various structures emit airborne sound and structureborne sound and are major source of noise and vibration. Especially when machines are installed upon a flexible foundation, most of noise and vibration are due to transmission of structureborne sound. Therefore, characterization and measurement of structureborne sound source level are necessary for controlling noise and vibration. But structureborne sound from vibrating machine is strongly coupled to the supportingstructure. This paper proposes the method of estimating the supporting sturcture's dynamic character- istic and structureborne sound source level for machine installed system without separating the machine, resilient mount and foundation.

  • PDF