• Title/Summary/Keyword: Vibration & Noise Act

Search Result 53, Processing Time 0.025 seconds

Vibration Analysis of Rotor System for Rotary Compressor (로터리 컴프레서의 축계 진동해석)

  • 정의봉;김태학;이현욱;박영도
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.260-265
    • /
    • 1997
  • Large dynamic loads act on the rotor in rotary compressors. There are unbalance forces due to eccentric rotation parts and gas forces induced by the difference in pressure between compression and suction gases6 Rotor-journal bearing system is nonlinear since the stiffness and damping coefficients of the lubricating oil film are not constant in the bearings. In this paper, the program for predicting the behaviors of rotor-journal bearing system of rotary compressor is developed. Finite element modeling is used to analyze the flexible rotor. The numerical results are compared with experimental results. The location of balancer weight are suggested for reducing rotor whiring displacement.

  • PDF

A Study on the Acoustic Performance Indication Standards of Apartment Housing Performance Grade Indication System (공동주택 성능등급 표시제도 상의 음성능 표시기준 고찰)

  • Yang, Kwan-Seop;Kim, Kyoung-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1252-1255
    • /
    • 2006
  • The government has enforced Housing Performance Grade Indication System (Article 21, Paragraph 2 of Housing Act) starting January 2006 for the purpose of giving users in hope of toying an apartment opportunities to select housing based on personal preferences by providing information on housing performance at the time of tenant recruitment announcement as well as securing desirable environment (comfort) by encouraging construction companies to build housing of the indicated performance level. The acoustic performance indication items include three items such as floor impact isolation performance(light weight impact sound, heavy weight impact sound), bathroom noise and insulation performance of boundary walls between households. This paper explains the background, the basis of creation and evaluation method focused on the acoustic environment performance helping for the developer of technique and a staff in charge of construction business who cope with this system.

  • PDF

Element Design of Balancing Shaft for Reducing the Vibration in Engine Module (엔진진동 저감을 위한 밸런싱샤프트의 요소설계 기법 연구)

  • Kim, Chan-Jung;Beak, Gyoung-Won;Lee, Bong-Hyun;Kim, Gi-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.615-620
    • /
    • 2005
  • Vibration in Engine module could be reduced by introducing a balance shaft module which has one or more unbalanced rotors. The unbalanced rotor is unbalanced in one direction that act as a opposite direction of the inertia force or moment triggered by engine component so that the largest order factor in vibration is efficiently decreased The ability of balance shaft to reduce the order element of engine component is investigated by a vehicle testing that is focused on comparing the vibration with balance shaft to that of without balance shaft. One of the commonly adapted balance shaft is tested by modal scheme for indemnifying the dynamic characteristics and an, the modal information is used for a clue to design the balance shaft module. The essential equation deriving the design parameters of unbalanced rotor is also presented for two cases, 3 in-ling and 4 in-ling cylinder model. Finally, the overall design process is explained with flow chart.

  • PDF

A Study on the Environmental Friendly Noise and Vibration Management Method for the Construction Project (건설사업의 소음 $\cdot$ 진동 관리방안에 관한 연구)

  • Ko Kwang-il;Kim In-ho;Seo Sang-wook;Lee Chan-sik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.6 s.22
    • /
    • pp.110-117
    • /
    • 2004
  • The environmental-related disputes and claims are steeply increasing recently. Among them the number of disputes and claims on noise and vibration incurred in the process of construction is more than $85\%$. Since those disputes and claims cause cost overrun and or penalty and bad impression for the construction company, it is necessary to develop a systematic management method for solving them. This study presents a environmental management structure based on the examining many kinds of environmental-related laws including 'The Act on Regulation of Noise and Vibration' furthermore, through analysing various dispute and claim cases, and surveying literatures we suggest environmental study noise and vibration management method using for the preconstruction phase, the construction phase and the post construction phase, respectively.

Finite Element Modeling of a Carbon Nanotube Actuator (탄소나노튜브 엑츄에이터의 설계에서의 유한요소모델링 기법)

  • 김정택;현석정;김철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.559-562
    • /
    • 2004
  • Carbon nanotube is a geometrical frame-like structure and the primary bonds between two nearest-neighboring atoms act like beam members, whereas an individual atom acts as the joint of the related beam members. The sectional property parameters of these beam members are obtained from molecular mechanics. Computations of the elastic deformation of single-walled carbon nanotubes reveal that the Young's moduli of carbon nanotubes vary with the tube diameter and are affected by their helicity. With increasing tube diameter, the Young's moduli of carbon nanotubes approach the Young's modulus of graphite.

  • PDF

Distance Attenuation of Bending Wave to Analyze the Loose Parts Impact Signal (금속파편 충격 신호분석을 위한 굽힘파의 거리 감쇠)

  • Lee, Jeong-Han;Park, Jin-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.594-601
    • /
    • 2016
  • Mass estimation analysis of loose-parts in pressure vessel is necessary for the structural integrity assessment of pressure boundary in nuclear power plants. Mass of loose-parts can be generally estimated from the peak values and the center frequency of impact signals. Magnitude of impact signals is, however, inevitably attenuated according to the traveling distance of the signals and depending on the frequencies. Attenuation rate must be therefore carefully compensated for the precise estimation of loose-part mass. This paper proposes a new compensation method for the attenuation rate based on Bessel function instead of Hankel function in conventional method which has a limitation of usage in near the impact location. It was verified that the suggested compensating equation based on the Bessel function can be applied to the attenuation rate calculation without any limitation.

Comparison of the Wave Propagation Group Velocity in Plate and Shell (평판 및 셸에서의 파동 전파 군속도 비교)

  • Lee, Jeong-Han;Park, Jin-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.4
    • /
    • pp.483-491
    • /
    • 2016
  • Precision of theoretical group velocity of waves in shell structures was discussed for the purpose of source localization of loose parts impact in pressure vessels of nuclear power plants. Estimating exact location of loose parts impact inside a reactor or a steam generator is very important in safety management of a NPP. Evaluation of correct propagation velocity of impact signals in pressure vessels, most of which are shell structures, is essential in impact source localization. Theoretical group velocities of impact signals in a plate and a shell were calculated by wave equations and compared to the velocities measured experimentally in a plate specimen and a scale model of a nuclear reactor. The wave equation applicable to source localization algorithm in shell structures was chosen by the study.

Identification of the Rigid Body Properties using the Mass-line of F.R.F. in Free-boundary Condition (자유경계 조건에서의 질량선에 의한 강체특성 규명)

  • 안세진;정의봉;황대선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.745-749
    • /
    • 2001
  • The rigid body properties of a structure may be estimated easily if the mass-line of the structure could be taken exactly. However, the exact mass-line cannot be obtained experimentally. In the past years, the modal analysis for which the structure is mounted on the flexible supporter is frequently used to acquire the mass-line. Unfortunately, it is difficult not only to mount the structure but also to decouple the coupled 6 dof mode. If the structure is pended by very long and flexible rope to act free, the rigid-body modes influenced by the rope will be eliminated and the improved mass-line will be obtained. In this paper, the method using the mass-line of F.R.F. for rigid body in free-condition is suggested. The robustness of the suggested method was tested and verified numerically. The experimental results also showed a good agreement with the true value.

  • PDF

Wind Load Mitigation for Transmission Tower using Viscoelastic Damper (점탄성감쇠기를 이용한 송전철탑 풍하중의 저감)

  • Min, Kyung-Won;Park, Ji-Hun;Moon, Byoung-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.955-958
    • /
    • 2005
  • In this study, the wind load characteristics for a transmission tower is investigated considering the effect of the transmission lines through stochastic analysis. The assemblage of the transmission line and insulator are modeled as a double pendulum system connected to the SDOF model of the tower It is observed that the background component of the overturing moment induced by the wind response of the transmission line has considerable portion in the total overturning moment. Based on this result, a rotational viscoelastic damper (VED) is proposed for the mitigation of the transmission line reactions, which act as wind load transferred to the tower. To verify the effectiveness of the proposed strategy, time history analysis is conducted for different wind velocities and VED damping constants. From the analysis, the proposed VED is proved to be effective for mitigation of the background component rather than the resonance component of the transmission line reaction.

  • PDF

Dynamic Analysis of Rotary Compressor with Rotor Misaligment (축어긋남을 갖는 로터리 컴프레서의 동적해석)

  • 정의봉;김태학
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.82-87
    • /
    • 1997
  • Large dynamic loads act on the rotor in rotary compressors. There are unbalance forces due to eccentric parts and gas forces induced by the pressure difference between compression and suction gases. Rotor-journal bearing system is nonlinear since the stiffness and damping coefficients of the lubricating oil film are not constant in the bearings. The system is considered as a coupled problem of flexible rotor and the journal bearings. Bearing reaction force is calculated from pressure of oil film using Reynolds equations in journal bearings. Pressure distribution in journal bearing is analyzed by finite difference method. The dynamic response of rotor and bearing characteristic are discussed when rotary compressor has a relative misalignment.

  • PDF