• Title/Summary/Keyword: Veterinary Drug

Search Result 688, Processing Time 0.027 seconds

Development and Validation of Analytical Method for Nitroxoline in Chicken Using HPLC-PDA (HPLC-PDA를 이용한 닭고기 중 Nitroxoline 분석법 개발)

  • Cho, Yoon-Jae;Chae, Young-Sik;Kim, Jae-Eun;Kim, Jae-Young;Kang, Ilhyun;Lee, Sang-Mok;Do, Jung-Ah;Oh, Jae-Ho;Chang, Moon-Ik;Hong, Jin-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.1
    • /
    • pp.70-77
    • /
    • 2013
  • BACKGROUND: Nitroxoline is an antibiotic agent. It is used for the treatment of the second bacterial infection by the colibacillosis, salmonellosis and viral disease of the poultry. When the nitroxoline is indiscreetly used, the problem about the abuse of the antibiotics can occur. Therefore, this study presented the residue analytical method of nitroxoline in food for the safety management of animal farming products. METHODS AND RESULTS: A simple, sensitive and specific method for nitroxoline in chicken muscle by high performance liquid chromatograph with PDA was developed. Sample extraction with acetonitrile, purification with SPE cartridge (MCX) were applied, then quantitation by HPLC with C18 column under the gradient condition with 0.1 % tetrabutylammonium hydroxide-phosphoric acid and methanol was performed. Standard calibration curve presented linearity with the correlation coefficient ($r^2$) > 0.999, analysed from 0.02 to 0.5 mg/L concentration. Limit of quantitation in chicken muscle showed 0.02 mg/kg, and average recoveries ranged from 72.9 to 88.1 % in chicken muscle. The repeatability of measurements expressed as coefficient of variation (CV %) was less than 12 % in 0.02 and 0.04 mg/kg. CONCLUSION(S): Newly developed method for nitroxoline in chicken muscle was applicable to food inspection with the acceptable level of sensitivity, repeatability and reproducibility.

Development and validation of an analytical method for fungicide fenpyrazamine determination in agricultural products by HPLC-UVD (HPLC-UVD를 이용한 살균제 fenpyrazamine의 시험법 개발 및 검증)

  • Park, Hyejin;Do, Jung-Ah;Kwon, Ji-Eun;Lee, Ji-Young;Cho, Yoon-Jae;Kim, Heejung;Oh, Jae-Ho;Rhee, Kyu-Sik;Lee, Sang-Jae;Chang, Moon-Ik
    • Analytical Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.172-180
    • /
    • 2014
  • Fenpyrazamine which is a pyrazole fungicide class for controlling gray mold, sclerotinia rot, and Monilinia in grapevines, stone fruit trees, and vegetables has been registered in republic of Korea in 2013 and the maximum residue limits of fenpyrazamine is set to grape, peach, and mandarin as 5.0, 2.0, and 2.0 mg/kg, respectively. Very reliable and sensitive analytical method for determination of fenpyrazamine residues is required for ensuring the food safety in agricultural products. Fenpyrazamine residues in samples were extracted with acetonitrile, partitioned with dichloromethane, and then purified with silica-SPE cartridge and eluted with hexane and acetone mixture. The purified samples were determined by HPLC-UVD and confirmed with LC-MS and quantified using external standard method. Linear range of fenpyrazamine was between $0.1{\sim}5.0{\mu}g/mL$ with the correlation coefficient (r) 0.999. The average recovery ranged from 71.8 to 102.7% at the spiked level of 0.05, 0.5, and 5.0 mg/kg, while the relative standard deviation was between 0.1 and 7.3%. In addition, limit of detection and limit of quantitation were 0.01 and 0.05 mg/L, respectively. The results revealed that the developed and validated analytical method is possible for fenpyrazamine determination in agricultural product samples and will be used as an official analytical method.

Malignant Schwannoma in F344 Rat

  • Kim, Bang-hyun;Nam, Ki-taek;Han, Beom-seok;Park, Ki-dae;Cho, Wan-seob;Jang, Dong-deuk;Lee, Kook-kyung;Kim, Dae-yong;Yang, Ki-hwa
    • Proceedings of the Korean Society of Veterinary Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.8-8
    • /
    • 2003
  • Schwannoma is a neoplasm of the Schwann cells of the neural sheath [1]. Malignant schwannoma is most commonly seen in the subcutis of the flank or neck area near the salivary glands [2]. It also occurs in the thoracic and abdominal cavities, spinal cord, cranial cavity, the heart, etc. Here, we incidentally found a good case of malignant schwannoma in the subcutis of the lumbar and lumbosacral region in male F344 rat during the carcinogenicity study with diisodecyl phthalate (DIDP). Therefore, we tried to report this case as a good reference of malignant schwannoma. (omitted)

  • PDF

Development of an Official Analytical Method for Determination of Phorate and its Metabolites in Livestock Using LC-MS/MS (LC-MS/MS를 이용한 축산물 중 Phorate 및 대사산물 5종 동시분석법 개발)

  • Ko, Ah-Young;Kim, Heejung;Jang, Jin;Lee, Eun Hyang;Ju, Yunji;Noh, Mijung;Kim, Seongcheol;Park, Sung-Won;Chang, Moon-Ik;Rhee, Gyu-Seek
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.3
    • /
    • pp.272-280
    • /
    • 2015
  • A simultaneous official method was developed for the determination of phorate and its metabolites (phorate sulfoxide, phorate sulfone, phorate oxon, phorate oxon sulfoxide, phorate oxon sulfone) in livestock samples. The analytes were quantified and confirmed via liquid chromatograph-tandem mass spectrometer (LC-MS/MS) in positive ion mode using multiple reaction monitoring (MRM). Phorate and its metabolites were extracted from beef and milk samples with acidified acetonitrile (containing 1% acetic acid) and partitioned with anhydrous magnesium sulfate. Then, the extract was purified through primary secondary amine (PSA) and C18 dispersive sorbent. Matrix matched calibration curves were linear over the calibration ranges (0.005-0.5 mg/L) for all the analytes into blank extract with $r^2$ > 0.996. For validation purposes, recovery studies were carried out at three different concentration levels (beef 0.004, 0.04 and 0.2 mg/kg; milk 0.008, 0.04 and 0.2 mg/kg, n = 5). The recoveries were within 79.2-113.9% with relative standard deviations (RSDs) less than 19.2% for all analytes. All values were consistent with the criteria ranges requested in the Codex guidelines. The limit of quantification was quite lower than the maximum residue limit (MRL) set by the Ministry of Food and Drug Safety (0.05 mg/kg). The proposed analytical method was accurate, effective and sensitive for phorate and its metabolites determination and it will be used to as an official analytical method in Korea.

Establishment of Analytical Method for Residues of Ethychlozate, a Plant Growth Regulator, in Brown Rice, Mandarin, Pepper, Potato, and Soybean Using HPLC/FLD

  • Kim, Jae-Young;Lee, Jin Hwan;Lee, Sang-Mok;Chae, Young-Sik;Rhee, Gyu-Seek;Chang, Moon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.111-119
    • /
    • 2015
  • BACKGROUND: Ethychlozate (ECZ) is a plant growth regulator of synthetic auxin for agricultural commodities (ACs). Accurate and sensitive method to determine ECZ in diverse ACs on global official purpose is required to legal residue regulation. As the current official method is confined to the limited type of crops with poor validation, this study was conducted to improve and extend the ECZ method using high-performance liquid chromatography (HPLC) in all the registered crops with method verification. METHODS AND RESULTS: ECZ and its acidic metabolite (ECZA) were both extracted from acidified samples with acetone and briefly purified by dichloromethane partition. ECZ was hydrolyzed to form ECZA and the combined ECZA was finally purified by ion-associated partition including hexane-washing. The instrumental quantitation was performed using HPLC/ FLD under ion-suppression of ECZA with no interference by sample co-extractives. The average recoveries of intra- and inter-day experiment ranged from 82.0 to 105.2% and 81.7 to 102.8%, respectively. The repeatability and reproducibility for intra- and inter-day measurements expressed as a relative standard deviation was less than 8.7% and 7.4%, respectively. CONCLUSION: Established analytical method for ECZ residue in ACs was applicable to the nation-wide pesticide residues monitoring program with the acceptable level of sensitivity, repeatability and reproducibility.

Development of Simultaneous Analytical Method for Determination of Isoxaflutole and its Metabolite (Diketonitrile) residues in Agricultural Commodities Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Isoxaflutole과 대사산물(Diketonitrile)의 동시시험법 개발)

  • Ko, Ah-Young;Kim, Heejung;Do, Jung Ah;Jang, Jin;Lee, Eun-Hyang;Ju, Yunji;Kim, Ji Young;Chang, Moon-Ik;Rhee, Gyu-Seek
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.2
    • /
    • pp.93-103
    • /
    • 2016
  • A simultaneous analytical method was developed for the determination of isoxaflutole and metabolite (diketonitrile) in agricultural commodities. Samples were extracted with 0.1% acetic acid in water/acetonitrile (2/8, v/v) and partitioned with dichloromethane to remove the interference obtained from sample extracts, adjusting pH to 2 by 1 N hydrochloric acid. The analytes were quantified and confirmed via liquid chromatograph-tandem mass spectrometer (LC-MS/MS) in positive-ion mode using multiple reaction monitoring (MRM). Matrix matched calibration curves were linear over the calibration ranges ($0.02-2.0{\mu}g/mL$) for all the analytes into blank extract with $r^2$ > 0.997. For validation purposes, recovery studies were carried out at three different concentration levels (LOQ, 10LOQ, and 50LOQ) performing five replicates at each level. The recoveries were ranged between 72.9 to 107.3%, with relative standard deviations (RSDs) less than 10% for all analytes. All values were consistent with the criteria ranges requested in the Codex guideline (CAC/GL40, 2003). Furthermore, inter-laboratory study was conducted to validate the method. The proposed analytical method was accurate, effective, and sensitive for isoxaflutole and diketonitrile determination in agricultural commodities.

Capsular serogrouping and antimicrobial drug susceptibility of Pasteurella multocida isolated from Youngnam swine herds (영남지방 돼지에서 분리한 Pasteurella multocida의 협막혈청형 및 항균제 감수성 조사)

  • Cho, Gil-jae;Kim, Bong-hwan;Tak, Ryun-bin
    • Korean Journal of Veterinary Research
    • /
    • v.29 no.4
    • /
    • pp.487-492
    • /
    • 1989
  • The capsular serogroupes and drug susceptibility of 111 isolates of Pasteurella multocida from pigs with atrophic rhinitis and pneumonic lesions were investigated. Of the 111 P multocida isolates, 42 were from lung lesions, 47 from nasal turbinate lesions and the remaining 22 from the nasal swabs. P multocida isolates were typed for capsular serogroupes A by hyaluronidase inhibition of capsule and D by acriflavine auto-agglutination. Most isolates(64.9%) were type A, 23.4% were type D and the remaining 11.7% were untypable. Resistance to triple sulfa(97.3%) was most frequent, followed by resistance to tiamulin(71.2%), tylosin(56.8%), streptomycin(36.9%), and neomycin(36.0%). The majority of the organisms were susceptible in order of prevalence to baytril(100%), ampicillin(98.2%), linsmycin(97.3%), colistin(97.3%), cephalothin(94.6%), gentamicin(93.7%), amikacin(92.3%), tetracycline(91.9%), trimethoprim/sulfamethoxazole(91.0%), and kanamycin(90.1%). No differences in drug resistance in relation to capsular serogroupes of P multocida and the origin of lesions were noted. A high prevalence of multiple drug resistance was observed and the most common resistant patterns were Sss, Tm, Ty(12.6%) and Sm, Sss, Tm, Ty(8.1%) patterns.

  • PDF

Development of Analytical Method for Kasugamycin in Agricultural Products using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Kasugamycin 시험법 개발)

  • Lee, Han Sol;Do, Jung-Ah;Park, Ji-Su;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.235-241
    • /
    • 2019
  • An analytical method was developed for the determination of an antibiotic fungicide, kasugamycin, in agricultural products (hulled rice, potato, soybean, mandarin and green pepper) using liquid chromatographytandem mass spectrometry (LC-MS/MS). Samples were extracted with methanol adjusted to pH 13 using 1 N sodium hydroxide, and purified with a HLB (hydrophilic lipophilic balance) cartridge. Linearity of a matrix-matched calibration curve using seven concentration levels, from 0.001 to 0.1 mg/kg, was excellent with a correlation coefficient ($R^2$) of more than 0.9998. The limits of detection (LOD) and quantification (LOQ) of instrument were 0.0005 and $0.001{\mu}g/mL$, respectively, and the LOQ of analytical method calculated as 0.01 mg/kg. The average recoveries at three spiking levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n=5) were in the range of 71.2~95.4% with relative standard deviation of less than 12.1%. The developed method was simple and all optimized results was satisfied with the criteria ranges requested in the Codex guidelines and Food Safety Evaluation Department guidelines. The present study could be served as a reference for the establishment of maximum residue limits (MRL) of kasugamycin and be used as basic data for safety management relative to kasugamycin residues in imported and domestic agricultural products.

Development of a Simultaneous Analytical Method for Determination of Herbicide Fenquinotrione and KIH-3653-M-2 Residues in Agricultural Crops using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 제초제 fenquinotrione 및 대사산물 KIH-3653-M-2 동시시험법 개발)

  • Park, Ji-Su;Do, Jung-Ah;Lee, Han Sol;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.242-250
    • /
    • 2019
  • An analytical method was developed for the determination of fenquinotrione, a triketone herbicide, in agricultural products. Fenquinotrione was metabolized to KIH-3653-M-2 in plants. Analyte extraction was conducted using 2% formic acid in acetonitrile and cleaned up using a hydrophillic-lipophillic balance (HLB) cartridge. The limits of detection (LOD) and quantification (LOQ) were 0.004 and 0.01 mg/kg, respectively. Matrix-matched calibration curves were linear over the calibration ranges ($0.001{\sim}0.1{\mu}g/mL$) into a blank extract with $r^2>0.99$. The recovery results for fenquinotrione and KIH-3653-M-2 ranged between 81.1 to 116.2% and 78.0 to 110.0% at different concentration levels (LOQ, $10{\times}LOQ$, $50{\times}LOQ$) with relative standard deviation (RSD) less than 4.6%. All values were corresponded with the criteria ranges requested in both the Codex (CAC/GL 40-1993, 2003) and MFDS guidelines (2016). Therefore, the proposed method can be used as an official analytical method for determination of fenquinotrione in the Republic of Korea.

Development and Validation of an Analytical Method for Quinoxyfen in Agricultural Products using QuEChERS and LC-MS/MS (QuEChERS법 및 LC-MS/MS를 이용한 농산물 중 살균제 Quinoxyfen의 잔류시험법 개발 및 검증)

  • Cho, Sung Min;Do, Jung-Ah;Lee, Han Sol;Park, Ji-Su;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.140-147
    • /
    • 2019
  • An analytical method was developed for the determination of quinoxyfen in agricultural products using the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted with 1% acetic acid in acetonitrile and water was removed by liquid-liquid partitioning with $MgSO_4$ (anhydrous magnesium sulfate) and sodium acetate. Dispersive solid-phase extraction (d-SPE) cleanup was carried out using $MgSO_4$, PSA (primary secondary amine), $C_{18}$ (octadecyl) and GCB (graphitized carbon black). The analytes were quantified and confirmed by using LC-MS/MS in positive mode with MRM (multiple reaction monitoring). The matrix-matched calibration curves were constructed using six levels ($0.001-0.25{\mu}g/mL$) and the coefficient of determination ($R^2$) was above 0.99. Recovery results at three concentrations (LOQ, 10 LOQ, and 50 LOQ, n=5) were in the range of 73.5-86.7% with RSDs (relative standard deviations) of less than 8.9%. For inter-laboratory validation, the average recovery was 77.2-95.4% and the CV (coefficient of variation) was below 14.5%. All results were consistent with the criteria ranges requested in the Codex guidelines (CAC/GL 40-1993, 2003) and Food Safety Evaluation Department guidelines (2016). The proposed analytical method was accurate, effective and sensitive for quinoxyfen determination in agricultural commodities. This study could be useful for the safe management of quinoxyfen residues in agricultural products.