• Title/Summary/Keyword: Vessel sensor

Search Result 143, Processing Time 0.036 seconds

Restoration of Chest X-ray Image Using Dual Projection Filter (이중 프로젝션 필터를 이용한 흉부 X-선 영상의 복원)

  • 이태수;민병구
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.1
    • /
    • pp.25-32
    • /
    • 1992
  • A new restoration method of chest X -ray image (dual project filter) was proposed to improve SNR(signal to noise ratio) characteristics. In this method, a priori Information of system and anatomical structure and statistics of projected object are used in the design of filter. Dual projection filter varies its parameters, adapting to the local regions of chest(lung region, mediasternum, subdiaphragm) and the structure of chest (bone, tissue, blood vessel, bronchia). The performance of Dual Projection Filter was 0.1-0.2dB better than Dual Sensor Wiener Filter, which was used for initial estimate of Dual Porjection Filter.

  • PDF

Treatment of the Herniated Nucleus Pulposus Syndrome by Chemonucleolysis with Chymopapain

  • Dabezies, Eugene J.
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.111-120
    • /
    • 1984
  • A new restoration method of chest X-ray image (dual project filter) was proposed to improve SNR (signal to noise ratio) characteristics. In this method, a priori information of system and anatomical structure and statistics of projected object are used in the design of filter. Dual projection filter varies its parameters, adapting to the local regions of chest(lungregion, mediasternum, subdiaphragm) and the structure of chest (bone, tissue, blood vessel, bronchia). The performance of Dual Projection Filter was 0.1-0.2dB better than Dual Sensor Wiener Filter, which was used for initial estimate of Dual Porjection Filter.

  • PDF

Measurement of Thickness and Position of the Surface using the Two Encoder Ultrasonic Sensors (두개의 엔코드 초음파 센서를 이용한 측정면의 두께 측정 및 위치 측정)

  • 강명철;장유신;김형국;배종일;이만형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.510-514
    • /
    • 2002
  • The 3-dimensional measuring machine by using an ultrasonic sensor is used one of the NDE(Non Destructive Examination). It is applied to the inspection of pipelines, boreholes, pressure vessel and tank, and so on. In particular when a harsh environment prohibits the use of moving mechanical parts. The 3-dimensional measuring machine by using an ultrasonic sensor, which measure 1-dimensional information and 2-dimensional information simultaneously from a target of inspection, and then reembody 3-dimensional information. So we can find the situation in progress and predict remaining life and corrosion without destructive examination. It's a point of excellence that the 3-dimensional measuring machine is portable.

  • PDF

Application of the Vision Sensor for Weld Seam Tracking System in Large Vessel Fabrication

  • Park, Sang-Gu;Lee, Jee-Hyung;Ryu, Sang-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.56.3-56
    • /
    • 2002
  • For the weld quality improvement and the convenient operation of machines, laser vision system can be used to track weld seams on pressure vessels. There are many bad conditions to the weld grooves such as cutting error, gap variation of weld joint, and offset error of center line caused by misalignment. We developed a laser vision seam tracking system which consists of a laser vision sensor, a two axis positioning mechanism and a user interface program running on the Windows system. It was found that our system worked well for U, V and X shaped grooves. We used an industrial PC as the system controller to secure immunity to electrical noise and dust. We introduce here a simple and...

  • PDF

Thermal Design and Heat Load Measurement of PSICS (적외선 우주망원경 냉각시스템 열설계 및 열침입량 측정)

  • Yang H. S.;Kim D. L.;Lee B. S.;Choi Y. S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.3
    • /
    • pp.43-46
    • /
    • 2005
  • A Protomodel Space Infrared Cryogenic System (PSICS) cooled by a stirling cryocooler was designed. The PSICS has an IR sensor inside a cold box which is cooled by a stilting cryocooler with refrigeration capacity of 500mw at 80K in a vacuum vessel. It is important to minimize heat load for reducing background thermal noise. In order to design the cryogenic system of low heat load and to reduce heat load, we did several numerical analyses and tested using boil-off calorimetry with liquid nitrogen to measure the heat leak of the system. In this paper, we present the results obtained by thermal analysis and heat load measurement for designing the PSICS.

3-Dimensional and Kinematic Analysis of a System for NDE(Nondestructive Examination) (비파괴 검사 응용을 위한 기구부의 3차원 기구학적 해석)

  • Kim, Hyung-Kuk;Lee, Dong-Hwal;Ahn, Hee-Tae;Park, Jae-Whe;Lee, Man-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2199-2201
    • /
    • 2001
  • The 3-dimensional measuring machine by using an ultrasonic sensor is used one of the NDE(Nondestructive Examination). It is applied to the inspection of pipelines, boreholes, pressure vessel and tank, and so on. In particular when a harsh environment prohibits the use of moving mechanical parts. The 3-dimensional measuring machine by using an ultrasonic sensor, which measure 1-dimensional information and 2-dimensional information simultaneously from a target of inspection, and then reembody 3-dimensional information. So we can find the situation in progress and predict remaining life and corrosion without destructive examination. It's a point of excellence that the 3-dimensional measuring machine is portable.

  • PDF

Fieldbus Communication Network Requirements for Application of Harsh Environments of Nuclear Power Plant (원전 극한 환경적용을 위한 필드버스 통신망 요건)

  • Cho, Jai-Wan;Lee, Joon-Koo;Hur, Seop;Koo, In-Soo;Hong, Seok-Boong
    • Journal of Information Technology Services
    • /
    • v.8 no.2
    • /
    • pp.147-156
    • /
    • 2009
  • As the result of the rapid development of IT technology, an on-line diagnostic system using the field bus communication network coupled with a smart sensor module will be widely used at the nuclear power plant in the near future. The smart sensor system is very useful for the prompt understanding of abnormal state of the key equipments installed in the nuclear power plant. In this paper, it is assumed that a smart sensor system based on the fieldbus communication network for the surveillance and diagnostics of safety-critical equipments will be installed in the harsh-environment of the nuclear power plant. It means that the key components of fieldbus communication system including microprocessor, FPGA, and ASIC devices, are to be installed in the RPV (reactor pressure vessel) and the RCS (reactor coolant system) area, which is the area of a high dose-rate gamma irradiation fields. Gamma radiation constraints for the DBA (design basis accident) qualification of the RTD sensor installed in the harsh environment of nuclear power plant, are typically on the order of 4 kGy/h. In order to use a field bus communication network as an ad-hoc diagnostics sensor network in the vicinity of the RCS pump area of the nuclear power plant, the robust survivability of IT-based micro-electronic components in such intense gamma-radiation fields therefore should be verified. An intelligent CCD camera system, which are composed of advanced micro-electronics devices based on IT technology, have been gamma irradiated at the dose rate of about 4.2kGy/h during an hour UP to a total dose of 4kGy. The degradation performance of the gamma irradiated CCD camera system is explained.

A study on designing a level gauge for cryogenic liquefied storage vessel by using a differential pressure sensor (차압센서를 이용한 극저온 액화가스 저장용기의 액면측정장치 설계에 관한 연구)

  • Choi, Dong-Joon;Lim, Hyung-Il;Doh, Deog-Hee;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.384-390
    • /
    • 2013
  • The sizes of cryogenic vessels and storage tanks are becoming bigger due to strong demands from semiconductor and LCD industry as well as high-tech electronic industry. Conventional level and pressure gauges used for cryogenic vessels were analog types which made exact measurement difficult for the remained quantity at lower levels due to their poor accuracy. In this study, a design for a digital type gas level gauge which can measure the pressure and level inside of the cryogenic liquefied gas storage tanks has been proposed by using a differential pressure sensor, in which the measured data are monitored by a host PC and are transferred to a mobile printer for data confirmation at local station.

All-Fiber Optic Gyroscope (전광파이버형 광파이버 자이로)

  • Kim, In-Soo S.;Kim, Yo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1840-1842
    • /
    • 1998
  • Gyroscope is a very important core sensor, as a rotation sensor in inertial space, in inertial guidance and navigation system on aeronautics, plane, vessel and so on for civilian and millitary applications. Mechnical gyroscopes, adopting a principle of spinning a top, have been used in many application system. These mechnical gyroscopes need high power consumption, long warming time and complicated peripheral devices. But fiber-optic gyroscopes, based on the Sagnac effect, have novel advantages as small volume. simple scheme, low power consumption and high reliability. So we have developed a Intermediate grade All-fiber Optic Gyroscope, which has open-loop and minimum reciprocal configuration scheme. We have designed feedback circuits for stability of amplitude and phase using four lock-in amplifier(LIA) circuits and also used for noise limitation. This paper describes the scheme of optical part and electronic part and also test results of this all-fiber optic gyroscope. The performance have been achieved as long-term bias drift of $9.54^{\circ}/h$, random walk of $0.0317^{\circ}/\sqrt{h}$ and dynamic range of ${\pm}150\;deg/s$.

  • PDF

Operation result of the Cryogenic and Mechanical Measurement System for KSTAR (KSTAR 저온 및 구조 계측 시스템 운전 결과)

  • Kim, Y.O.;Chu, Y.;Yonekawa, H.;Bang, E.N.;Lee, T.G.;Baek, S.H.;Hong, J.S.;Lee, S.I.;Park, K.R.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.26-30
    • /
    • 2009
  • Korea Superconducting Tokamak Advanced Research(KSTAR) device is composed of 30 superconducting magnets, magnet structure, vacuum vessel, cryostat, current feeder system, and etc. KSTAR device is operated in the cryogenic temperature and high magnetic field. We install about 800 sensors - temperature sensors, stain gages, displacement gages, hall sensors - to monitor the thermal, mechanical, electrical status of KSTAR during operation. As a tremendous numbers of sensors should be installed for monitoring the KSTAR device, the method of effective installation was developed. The sensor test was successfully carried out to check its reliability and its reproduction in the cryogenic temperature. The sensor signal is processed by PXI-based DAQ system and communicated with central control system via machine network and is shown by Operator Interface(OPI) display in the main control room. In order to safely operate the device, any violations of mechanical & superconductive characteristic of the device components were informed to its operation system & operator. If the monitored values exceed the pre-set values, the protective action should be taken against the possible damage. In this paper, the system composition, operation criteria, operation result were presented.