• 제목/요약/키워드: Vessel force

검색결과 245건 처리시간 0.028초

Spectral Fatigue Analysis for Topside Structure of Offshore Floating Vessel

  • Kim, Dae-Ho;Ahn, Jae-Woo;Park, Sung-Gun;Jun, Seock-Hee;Oh, Yeong-Tae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제1권4호
    • /
    • pp.239-251
    • /
    • 2015
  • In this study, a spectral fatigue analysis was performed for the topside structure of an offshore floating vessel. The topside structure was idealized using beam elements in the SACS program. The fatigue analysis was carried out considering the wave and wind loads separately. For the wave-induced fatigue damage calculation, motion RAOs calculated from a direct wave load analysis and regular waves with different periods and unit wave heights were utilized. Then, the member end force transfer functions were generated covering all the loading conditions. Stress response transfer functions at each joint were produced using the specified SCFs and member end force transfer functions. fatigue damages were calculated using the obtained stress ranges, S-N curve, wave spectrum, heading probability of each loading condition, and their corresponding occurrences in the wave scatter diagrams. For the wind induced fatigue damage calculation, a dynamic wind spectral fatigue analysis was performed. First, a dynamic natural frequency analysis was performed to generate the structural dynamic characteristics, including the eigenvalues (natural frequencies), eigenvectors (mode shapes), and mass matrix. To adequately represent the dynamic characteristic of the structure, the number of modes was appropriately determined in the lateral direction. Second, a wind spectral fatigue analysis was performed using the mode shapes and mass data obtained from the previous results. In this analysis, the Weibull distribution of the wind speed occurrence, occurrence probability in each direction, damping coefficient, S-N curves, and SCF of each joint were defined and used. In particular, the wind fatigue damages were calculated under the assumption that the stress ranges followed a Rayleigh distribution. The total fatigue damages were calculated from the combination with wind and wave fatigue damages according to the DNV rule.

병렬 배치된 FLBT 및 LNG-BS에 작용하는 풍하중 및 조류하중에 대한 풍동 시험 및 경험식 비교 연구 (Wind tunnel test of wind loads and current loads acting on FLBT and LNG bunkering shuttles in side-by-side configuration and comparison with empirical formula)

  • 박병원;정재환;황성철;조석규;정동호;성홍근
    • 한국해양공학회지
    • /
    • 제31권4호
    • /
    • pp.266-273
    • /
    • 2017
  • In recent years, LNG bunkering terminals are needed to supply LNG as fuel to meet the emission requirements of the International Maritime Organization (IMO). A floating LNG bunkering terminal (FLBT) is one of the most cost-effective and environmentally friendly LNG bunkering systems for storing LNG and transferring it directly to an LNG fuel vessel. The FLBT maintains its position using mooring systems such as spread mooring and turret mooring. The loads on the vessel and mooring lines must be carefully determined to maintain their positions within the operable area. In this study, the wind loads acting in several side-by-side arrangements on the FLBT and LNG-BS were estimated using wind tunnel tests in the Force Technology, and the shielding effect due to the presence of ships upstream was evaluated. In addition, the empirical formulations proposed by Fujiwara et al. (2012) were used to estimate the wind force coefficients acting on the FLBT and those results were compared with experimental results.

선박 임장임검 및 불심검문의 법적성격과 허용범위에 관한 고찰 (A Study on the Legal Character and Admissible Scope of Inspection and Police Questioning of a Vessel)

  • 김종구
    • 해양환경안전학회지
    • /
    • 제14권4호
    • /
    • pp.309-316
    • /
    • 2008
  • 해상에서의 선박 임장임검과 불심검문의 법적성격과 강제력을 수반한 영장 없는 선박 임장임검과 불심검문의 가능성 및 그 허용범위의 문제를 특히 미국 및 일본의 경우와 비교하여 고찰하였다. 선박의 임장임겁이나 해상에서의 선박에 대한 불심검문이 원칙적으로 육상의 불심검문과 같은 성격을 갖지만, 선박의 특수성과 육상과는 다른 해상에서의 상황의 특수성을 고려 한다면, 선박의 임장임검이나 해상에서의 불심검문이 육상의 불심검문과 같이 항상 임의적으로 이루어져야 한다고 보기는 어려운 측면이 있는 것으로 판단된다.

  • PDF

선박자동식별장치의 효율적인 이용방안에 관한 연구 (A Study on the Enhancement of Utilization of Automatic Identification System)

  • 정중식;양원재
    • 해양환경안전학회지
    • /
    • 제9권2호
    • /
    • pp.15-21
    • /
    • 2003
  • 본 논문은 IMO의 해사안전위원회에서 결의하고 SOLAS 협약 제5장에 따라 2002년 7월 1일부터 시행되기 시작한 선박자동식별장치(AIS)의 도입목적을 달성하기 위하여 선박 또는 VTS센터에서 성공적인 운영방안을 마련하고, AIS도입에 따라 나타날 수 있는 제반 문제점들을 체계화함으로써 향후 AIS 기술개발이 이용자 측면에서 실용성있게 이루어지도록 하기 위한 지침을 제공하는데 그 목적을 두고 있다. 이를 위하여 AIS의 기술적 특징분석, 국내외 제도분석, 해양사고 현황분석을 통하여 AIS를 선박, VTS센터 및 해상보안시스템에 이용하고자 할 때 나타나는 문제점을 지적하고 그 활용방안을 제시하였다.

  • PDF

SCR 촉매의 공간속도 및 선속도가 NOx 제거 효율에 미치는 영향 (Effect of NOx Removal Efficiency according to Space Velocity and Linear Velocity of SCR Catalyst)

  • 박진우;박삼식;구건우;홍정구
    • 한국분무공학회지
    • /
    • 제21권2호
    • /
    • pp.71-77
    • /
    • 2016
  • Air pollutants nitrogen oxides are inevitably generated in the combustion reaction. Its amount trend is steadily increasing because the rapid modern industrialization and population growth. For this reason, NOx is controlled to reducing the harmful components in the exhaust gas. So Marine Environment Protection Committee (MEPC) take effect 'Tier I', 'Tier II' of air pollution regulation in 2005 and 2011 respectively. According to NOx emissions are strictly regulated management of the vessel through them. In addition, since 2016 the regulation enter into force in the next step 'Tier III' was confirmed by MEPC 66th committee. It's 80% enhanced emissions limits than the 'Tier I' Alternatively these emission regulation, research is actively being carried out about exhaust gas after-treatment methods through the vessel application of Selective Catalytic Reduction(SCR). Therefore depending on the basic specification of cell density according to the Area velocity, Space velocity, Linear velocity is studied the effects of NOx removal efficiency

수치계산에 의한 활주선의 항주 자세 및 저항 추정 (Numerical Prediction of Running Attitude and Resistance of Planing Craft)

  • 오광호;유재훈
    • 대한조선학회논문집
    • /
    • 제50권2호
    • /
    • pp.95-103
    • /
    • 2013
  • Prediction of the running posture is important to evaluate the resistance by the numerical calculation for a high speed vessel. Especially for a planing craft having a large variation of running attitude it becomes more essential, but it can not be obtained easily because the running posture and the hydrodynamic forces including the resistance are interacted with each other. So iterative calculation to obtain the dynamic forces according to the changes in attitude is necessary, in this study, considering the calculated hydrodynamic force at the assumed draft as the additional buoyancy the corrected draft is calculated through satisfying the equilibrium between the buoyancy and the hull weight. To verify the derived method three kinds of hull forms were used with the results of model tests, R/V ATHENA and 150 tons class guide vessel for middle-speed semi-planing crafts, 28 feet fast boat for a high-speed planing boat. For all cases with several iterations the converged value of draft can be obtained, lastly the resistance and flow around hull were simulated by using VOF method.

유기성 폐기물 반응기 내부 교반 축 및 블레이드 건전성 평가 (Integrity Evaluation of Agitating Axis and Blade in the Organic Waste Reactor)

  • 윤유성
    • 한국안전학회지
    • /
    • 제32권2호
    • /
    • pp.1-6
    • /
    • 2017
  • Modern society has been experiencing by population growth and urbanization that bring, a change of eating habits which has occurred a various types of waste in a large amount. Even though these wastes are required an immediate treatment with difficulties unsanitary handling and existing waste treatment method are by incineration, fermentation, drying and etc. however a bad smell occurs after the treatment that need's a lot of energy in processing organic wastes with high moisture contents and wasteful and inefficient problem. The strength assessment of the organic waste agitating vessel is required in terms of safety due to the differences of loading on the shaft that was treated by agitating the mixture of food waste. The damage of agitating axis is depended on steam pressure, temperature condition and the force moment that exerted by the food waste. Thus the strength assessment and stability evaluation are very important, especially to handle a hard waste. In this study the rotation capacity of agitation is about 5 tons considering general structural rolled steel pressure vessel strength and steam pressure. The purpose is to estimate the safety and strength evaluation for a agitator axis and impellers according to the rotating angle of the axis under the condition of the 3.2 ton capacity reactor.

다목적 화물선의 Crane Post설계에 관한연구 (A study on Design of Crane Post for Multi-Purpose Cargo vessel)

  • 전태병;임채환
    • 한국기계연구소 소보
    • /
    • 통권16호
    • /
    • pp.127-136
    • /
    • 1986
  • Recently deck crane of multi purpose cargo vessel (MPCV) is designed to posi¬tion in side instead of in the center line of the upper deck with a view to reduce the transportation cost and shipbuilding cost by shortening the length of ship. In this paper, the crane post was at first designed according to the crane maker’s specification and parent ship and the structure is analysed with Finite Ele¬ment Method. Through the careful reviews on the result of analysis, the final design of crane post was modified. The crane post is designed as a cylindrical in upper part and hexagonal in lower part instead of cylindrical on the whole as before. The connecting part of crane post is designed with the form of mixture of the cylinderical and hexagonal. Since the center of cylindrical and hexagonal section are not on the same line, it is expected to have the stress concentration. So, in order to attenuate the concentrated stress on the connecting part, the upper and lower parts was stiffened by inserting plate to enlarge the area of welding. The structure of deck part includes the tank side floor which is depend on the lower structure of the crane post that would support the force of the crane post by placing with 1.5 frame interval of the vertical plate.

  • PDF

대형선 프로펠러보스 슬립 손상부에 대한 응력 계산에 관한 연구 (The Study for Stress Calculation of Slip Damage between Propeller Boss and Shaft on the Large Vessel)

  • 백신영
    • 해양환경안전학회지
    • /
    • 제17권3호
    • /
    • pp.291-294
    • /
    • 2011
  • 프로펠러와 프로펠러축이 슬립(Slip)되는 사고가 발생하면 추진력 상실로 인한 안전과 경제적면에서 막대한 문제가 할 수 있다. 본 연구에서는 대형선박에서 슬립사고(Slip damage) 발생 원인을 사고 선박 승선원 면담, 신조선의 도면검토, 보험사 조사관 사고 보고서 등을 통해 조사하였다. 추가로 프로펠러의 재질에 대한 충격강도를 확인하기 위하여 압축시험을 실시하였다. 본 연구 결과는 키가 없는(Keyless type) 프로펠러의 접촉강도 설계 기준에 적용 할 수 있고, 나아가 프로펠러보스와 축이 슬립하는 사고를 방지하는데 유용한 자료를 제공 할 것으로 판단된다.

A Flow Analysis of Small Craft by Using CFD

  • Park, Ji-Yong;Jeong, Jin-Hee;Hwang, Tea-Wook;Lee, Sol-Ah;Kim, Kyung-Sung
    • Journal of Multimedia Information System
    • /
    • 제7권4호
    • /
    • pp.269-276
    • /
    • 2020
  • The small craft including jet-board for leisure are commonly smaller than the general commercial vessels. For the floating vessel, the motion analysis is significantly important component to design the shape. It is, however, hardly predicting its behavior by using conventional boundary element method due to violating small amplitude assumption for potential theory. The computational fluid dynamics method can afford to simulate such small craft, but its grid system was not able to calculate motion, because movable body disturbs the grid system by confliction. The dynamics fluid body interaction model with over-set mesh system can be dealt with movable floating body under irregular ocean wave. In this study, several cases were considered to reveal that DFBI is essential method to predict floating body motion. The single phase simulate was conducted to establish the shape perfection, and then the validated vessel was simulated with ocean waves weather DFBI option on or off. Through the comparison, the results between the cases of DFBI on and off shows significantly difference. It was claimed that the DFBI was necessary not only to calculation body motion, but also to predict accurate drag and lift force on the floating body for small size craft.