• Title/Summary/Keyword: Vessel design

Search Result 1,082, Processing Time 0.028 seconds

Design of an Automatic Winch System for Small Fishing Vessel (소형 어선의 자동 권양 윈치시스템 설계)

  • 이대재;김진건;김병삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.157-165
    • /
    • 2000
  • A small hydraulic winch system with an automatic tension control unit was designed to improve the work efficiency of coastal small vessels and the dynamic response characteristics of the winch system operated in the open loop condition was investigated. The inlet and the outlet pressures in hydraulic motor, the torque and the rotating speed of winch drum were measured as a function of time, and the behaviour in autotension mode for stepped load changes was analyzed. The results obtained are summarized as follows : 1. The developed winch system for coastal small vessels will result in better fishing with improved efficiency and lower manpower consumption by remote control of winch system. 2. The rotating delay times of winch drum for on/off operations of solenoid valve were 0.09 see at CW mode and 0.04 sec at CCW mode, respectively. After the solenoid valve was controlled, response characteristics were unstable slightly but showed good tracking behaviour over short time. 3. The driving torque of winch system in autotension mode was kept almost constant of 55.9 kgf·m, and 11.1 then the rotating speed of winch drum was kept almost constant of 5.1 rpm in the larger torque than 55.9 kgf·m and 11.1 rpm in the lower torque than that. 4. The 5% settling times in the transient response characteristics of autotension mode under rapid increasing and decreasing conditions of load were 0.12 sec and 0.2 sec, respectively, and then the rotating speeds were 11 rpm and 5.3 rpm, respectively. 5. The tracking behaviour of torque and rotating speed by remote control operation were stable within 0.23 sec at CW mode and 0.37 sec at CCW mode, respectively.

  • PDF

Stress and Fatigue Evaluation of Distributor for Heat Recovery Steam Generator in Combined Cycle Power Plant (복합발전플랜트 배열회수보일러 분배기의 응력 및 피로 평가)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.44-54
    • /
    • 2018
  • Stress and fatigue of the distributor, an equipment of the high-pressure evaporator for the HRSG, were evaluated according to ASME Boiler & Pressure Vessel Code Section VIII Division 2. First, from the results of the piping system analysis model, reaction forces of the tubes connected to the distributor were derived and used as the nozzle load applied to the detailed analysis model of the distributor afterward. Next, the detailed model to analyze the distributor was constructed, the distributor being statically analyzed for the design condition with the steam pressure and the nozzle load. As a result, the maximum stress occurred at the bore of the horizontal nozzle, and the primary membrane stress at the shell and nozzle was found to be less than the allowable. Next, for the transient operating conditions given for the distributor, thermal analysis was performed and the structural analysis was carried out with the steam pressure, nozzle load, and thermal load. Under the transient conditions, the maximum stress occurred at the vertical downcomer nozzle, and of which fatigue life was evaluated. As a result, the cumulative usage factor was less than the allowable and hence the distributor was found to be safe from fatigue failure.

Feasibility Study of Fuel Property for Fuel Processing Design on Ship and Warship (연료유 공정설계를 통한 선박 및 함정의 기본품질 적용 가능성 연구)

  • Hwang, Gwang-Tak;Kim, Do-young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.143-153
    • /
    • 2018
  • Environmental regulations, which are discussed through the International Maritime Organization, focus on two aspects: the economic supply of fuel oil and, ultimately, securing next-generation energy sources. At present, there are limitations in relation to the basic quality of fuel oil and the direct relation through basic quality when applied to ships and traps in relation to environmental regulations, and the standard for the basic quality of fuel oil is generally used. There are many cases where the composition is very complicated, and the interpretation and analysis of basic quality deviate from the range of the basic standard. In other words, it is difficult to classify and apply the problem when analyzing it in connection with fuel quality and ship operations. In this paper are various factors for the basic quality of fuel oil, and a proposed possibility for the scope of the standard.

The Effectiveness of Meridian Acupressure Intervention Using Sticker Needles to Bowel Movement on Post Spinal Operative Patients (스티커 침을 이용한 경혈지압이 척추수술 후 배변에 미치는 영향)

  • Kim, Yang-Kuem;Lee, Hyang-Yeon
    • Journal of East-West Nursing Research
    • /
    • v.11 no.1
    • /
    • pp.33-41
    • /
    • 2005
  • This study was conducted to identify the effect of meridian acupressure on defecation of patients with post spinal operation. The nonequivalent control group posttest only design was used. The data were obtained from 77 post spinal operative patients, 34 in the experimental 43 in control group in Y Hospital, Seoul, Korea. The neurosurgical unit A and B ward, assigned by matched sample by the name of operation such as laminectomy and posterior lumbar interbody fusion are performed. Meridian acupressure meant the method that an examiner presses response points distributed in the pass of energy vessel. In this study, meridian acupressure program was performed on as points in order of Hegue (LI-4), Zhigou (TE-6), Zusanli (S-36), Shangjuxu (S-37), Xiajuxu (S-39), Tianshu (S-25), Taichong (L-3) which was known to be related to large intestine. Data were collected from 1, July 2003 to 1, September 2003. Meridian acupressure program was carried out for 20 minutes 4 hours after operation twice daily. In order to evaluate the effect of meridian acupressure intervention, they were asked time of bowel recovery, gas passing, and defecation though questionnaire method. Data were analyzed by the SPSS/ WIN 11.0 program. The results of this study were summarized as follows; 1. Homogeneity tests of general characteristics and operation related characteristics of the experimental group and the control group were performed. General characteristics included age, sex, defecation habit, eating pattern, fluid intake, life style, activity, usage of laxative and etc. 2. Hypotheses were verification as follows; 1) Recovery of bowel sound of the experimental group who received meridian acupressure intervention was faster than that of the control group after spinal operation (t=-6.770,P=.000). 2) Time of gas passing of the experimental group who received meridian acupressure program was faster than that of the control group after spinal operation (t=-8.003, P=.000). 3) Time to defecation of the experimental group who received meridian acupressure program was faster than that of the control group after spinal operation (t=-9.026, P=.000). 4) Abdominal discomfort due to defecation of the experimental group who received meridian acupressure program was lesser than that of the control group after spinal operation (t=-3.431, P=.001). From these results, meridian acupressure intervention was effective for recovery of bowel sound, reduce time to gas passing, time to defecation and lessen abdominal discomfort due to defecation on post spinal operative patients. And therefore this intervention can probably considered on clinical practice.

  • PDF

Damage Evaluation of Bi-directionally Prestressed Concrete Panels under Blast-fire Combined Loading (폭발 후 화재하중 시나리오에 따른 2방향 프리스트레스트 콘크리트 패널부재의 손상도 평가)

  • Choi, Ji-Hun;Choi, Seung-Jai;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.237-248
    • /
    • 2017
  • Frequent terror or military attack by explosion, impact, fire accidents have occurred recently. These attacks and incidents raised public concerns and anxiety of potential terrorist attacks on important infrastructures. However, structural behavioral researches on prestressed concrete (PSC) infrastructures such as Prestressed Concrete Containment Vessel (PCCV) and Liquefied Natural Gas (LNG) storage tanks under extreme loading are significantly lacking at this time. Also, researches on possible secondary fire scenarios after terror and bomb explosion has not been performed yet. Therefore, a study on PSC structural behavior from an blast-induced fire scenario was undertaken. To evaluate the blast-fire combined resistance capacity and its protective performance of bi-directional unbonded PSC member, blast-fire tests were carried out on $1,400mm{\times}1,000mm{\times}300mm$ PSC specimens. Blast loading tests were performed by the detonation of 25 kg ANFO explosive charge at 1.0 m standoff distance. Also, fire and blast-fire combined loading were tested using RABT fire loading curve. The test results are discussed in detail in the paper. The results can be used as basic research references for related research areas, which include protective design simulation under blast-fire combined loading.

A study on appropriate ship power system for pulse load combine with secondary battery (펄스부하에 적합한 이차전지 연동형 선박 전력시스템에 관한 연구)

  • Oh, Jin-Seok;Lee, Hun-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.962-968
    • /
    • 2013
  • Problem of greenhouse gases associated with global warming and the world rise in fuel oil prices due to the depletion of fossil fuel has attracted attention. For this reason, maritime transport business, has shown interest in green-ship technology to reduce the consumption of fuel and reduce greenhouse gas for environmental protection. Power system of the ship is one of the most important factors for safe operation. Therefore, at design of ship power system, most of existing vessel used comparative large capacity generator in order to respond peak load such as bow thruster, crane and etc. In the navigation of ship, marine generators most would be operated at low load operation. In the low load operation of the generation rate of 50% or less, the operation efficiency of the generator it deteriorated, to consume more fuel oil. It also, it means that adversely effect the life of the generator. In this paper, studied how to apply for a secondary battery in container ship that relatively frequent arrival and departure in port. As a result, in order to apply the secondary battery to increase the operating efficiency of the generator during the voyage, it was confirmed that it is possible to reduce fuel consumption.

A Study on Thermal Performance of Plate Cooler for Cooling Medium Speed Engine Lubricant Oil (선박용 중속엔진 오일냉각용 판형쿨러의 전열성능에 관한 연구)

  • Park, Jae-Hong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.83-90
    • /
    • 2020
  • Plate heat exchangers(PHE) have been commercialized since the 1920s. Since then, although the basic concept of PHEs has changed little, its design and construction have progressed significantly to accommodate higher temperatures, higher pressures, and large heat exchanging capacities. The development trend of PHEs is consistent with heat plate developments with better thermal efficiency, lower pressure drop, and good flow distribution. The purpose of this paper is to introduce the main development processes of a plate cooler for medium-speed engine lubricant oil cooling in vessels which is in line with the development trend of PHEs and to provide its thermal performance data that were found out during experimental tests. The plate cooler in this study cannot measure the wall temperatures directly due to its structural characteristics, so the heat transfer coefficients were calculated using the modified Wilson Plot method. The water-to-water tests were first conducted experimentally to figure out the characteristics of heat transfer coefficients and pressure drops on the water side and then the water-to-oil tests followed to obtain the heat transfer coefficients on the oil side. The test results showed that heat transfer coefficients and pressure drops on both water and oil side increased with flow rates, and it was also found that all the development targets of the plate cooler in this study were achieved successfully.

Physical Properties of Rice Hull and Straw for the Handling Facilities

  • Oh, Jae H.;Kim, Myoung H.;Park, Seung J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.283-292
    • /
    • 1996
  • This study was performed to determine the physical properties of rice hull and straw which could be used for an optimum design and operation of the handling facilities for these rice crop by-products. The properties measured were kinetic friction coefficient , bulk density, and dynamic and static angle of repose. Rice hulls with moisture content of 13% and 21% were used throughout the test while rice straws of 10% and 16% moisture were chopped into 10mm length and used for the test. Friction coefficient was calculated from the horizontal traction forces measurement when a container holding the mass of rice hull and straw was pulled over mild steel. PVC, stainless steel, and galvanized steel surface by a universal testing machine. Bulk density was measured by an apparatus consisting of filling fundel and a receiving vessel. Dynamic angle of repose which is the angle at which the material will stand when piled was calculated from the photos of bulk samples after they were flowed by gravity and accumulated on a circular surface. Static angle of repose which is the angle between the horizontal and the sloping side of the material left in the container when discharging was also measured in the similar way. Results and conclusions from this study are summarized as follows . 1. Kinetic friction coefficient of both rice hull and straw were in the range of 0.26 -0.52 and increased with the moisture content. The magnitude of friction increased in the order of galvanized steel, stainless steel, PVC ,and mild steel. 2. Bulk densities of rice hull decreased while those of rice straw increased with moisture content increase . Average bulk densities of rice hull and straw were 96.8 and 74.7kg/㎥, respectively. 3. Average dynamic angle of repose for rice straw was 32.6$^{\circ}$ and those for 13% and 21% moisture rice hull were 38.9$^{\circ}$ and 44.9$^{\circ}$ , respectively. 4. Static angles of repose for both rice hull and straw showed increase with the moisture content. The values were 75.2\ulcorner and 80.2$^{\circ}$ for 13% and 21% moisture rice hull, respectively. Rice straws having 10% and 16% moisture content showed 87.3% and 89.2$^{\circ}$ static angle of repose, respectively.

  • PDF

Silver nanowires and nanodendrites synthesized by plasma discharge in solution for the catalytic oxygen reduction in alkaline media

  • Kim, Hoe-Geun;Song, Myeon-Gyu;Kim, Dong-U;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.62-62
    • /
    • 2018
  • Pt is still considered as one of the most active electrocatalysts for ORR in alkaline fuel cells. However, the high cost and scarcity of Pt hamper the widespread commercialization of fuel cells. As a strong candidate for the replacement of Pt catalyst, silver (Ag) has been extensively studied due to its high activity, abundance, and low cost. Ag is more stable than Pt in the pH range of 8~14 as the equilibrium potential of Ag/Ag+ being ${\approx}200mV$ higher than that of Pt/PtO. However, Ag is the overall catalytic activity of Ag for oxygen reduction reaction(ORR) is still not comparable to Pt catalyst since the surface Ag atoms are approximately 10 times less active than Pt atoms. Therefore, further enhancement in the ORR activity of Ag catalysts is necessary to be competitive with current cutting-edge Pt-based catalysts. We demonstrate the architectural design of Ag catalysts, synthesized using plasma discharge in liquid phase, for enhanced ORR kinetics in alkaline media. An attractive feature of this work is that the plasma status controlled via electric-field could form the Ag nanowires or dendrites without any chemical agents. The plasma reactor was made of a Teflon vessel with an inner diameter of 80 mm and a height of 80 mm, where a pair of tungsten(W) electrodes with a diameter of 2 mm was placed horizontally. The stock solutions were made by dissolving the 5-mM AgNO3 in DI water. For the synthesis of Agnanowires, the electricfield of 3.6kVcm-1 in a 200-ml AgNO3 aqueous solution was applied across the electrodes using a bipolar pulsed power supply(Kurita, Seisakusyo Co. Ltd). The repetition rate and pulse width were fixed at 30kHz and 2.0 us, respectively. The plasma discharge was carried out for a fixed reaction time of 60 min. In case of Ag nanodendrites, the electric field of 32kVcm-1 in a 200-ml AgNO3 aqueous solution was applied and other conditions were identical to the plasma discharge in water in terms of electrode configuration, repetition rate and discharge time. Using SEM and STEM, morphology of Ag nanowires and dendrites were investigated. With 3.6 kV/cm, Ag nanowire was obtained, while Ag dendrite was constructed with 32 kV/cm. The average diameter and legth of Ag nanowireses were 50 nm and 3.5 um, and thoes values of Ag dendrites were 40 nm and 3.0 um. As a results of XPS analysis, the surface defects in the Ag nanowires facilitated O2 incorporation into the surface region via the interaction between the oxygen and the electron cloud of the adjacent Ag atoms. The catalytic activity of Ag for oxygen reduction reaction(ORR) showed that the catalytic ORR activity of Ag nanowires are much better than Ag nanodendrites, and electron transfer number of Ag nanowires is similar to that of Pt (${\approx}4$).

  • PDF

Principle and Application of Composting for Soils Contaminated with Hazardous Organic Pollutants (오염토양 정화를 위한 콤포스팅 기술의 원리와 적용에 관한 고찰)

  • Park, Joon-Seok;Lee, Noh-Sup;In, Byung-Hoon;Namkoong, Wan;Hwang, Eui-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.77-87
    • /
    • 2001
  • Composting is a cost-effective and environmentally-sound technology to treat soils contaminated with hazardous organic pollutants. Pollutants to be treated are as follows: explosives, phenolic compounds, PAHs, petroleum hydrocarbons, pesticides, and etc. Composting systems are windrow, static pile, and in-vessel. Design and operational parameters of composting are aeration modes, temperature, moisture content, nutrient supplement, amendment added, and etc. Appropriate oxygen concentration of composting for contaminated soils are 5~15%, while some compounds are degraded well at the low $O_2$ concentration of 2~5%. The most diverse microorganisms live in the temperature of $25{\sim}40^{\circ}$. 50~90% of the soil field capacity is the moisture content not to make a problem in composting. Assuming a bacterial chemical equation is $C_{60}H_{87}O_{23}N_{12}P$, theoretical C : N : P from bacterial chemical portion is approximately 20 : 5 : 1. It should be noted that the ratio does not apply to the total organic carbon measured in a waste because not all carbon metabolized by bacteria is synthesized to new cellular material. Initial C/N ratio of 25~40 is optimum. It is more economical to recycle soils or composts than to add commercial microbes.

  • PDF