• 제목/요약/키워드: Very large container ship

검색결과 39건 처리시간 0.021초

실습선 한나라호에 작용하는 풍압력 및 풍압모우멘트 영향에 관한 연구 (A Study on the Effect of Wind Force and Moment Acting on T/S HANNARA)

  • 이윤석
    • 한국항해항만학회지
    • /
    • 제31권3호
    • /
    • pp.223-228
    • /
    • 2007
  • 최근 선박의 대형화와 전용화가 현저하게 진행됨에 따라 갑판 상부의 구조물이 비교적 큰 컨테이너선, LNG 운반선, 자동차운반선, 여객선 등이 출현하여 운항되고 있다. 이러한 선박들이 부두에서 접 이안 또는 항내에서 저속으로 운항할 경우 바람, 조류 등과 같은 외력의 영향을 받기 쉬우며, 외력이 과도할 경우에는 압류나 회두 현상으로 인해 선박 운항에 지장을 초래할 수 있으므로 특정 외력 하에서의 선체 거동에 대한 분석은 선박의 안전운항에 있어서 매우 중요한 자료라 할 수 있다. 본 연구는 수면 상부의 구조물이 상대적으로 큰 실습선 한나라호를 대상으로 정상풍 하에서의 선체에 작용하는 풍압력 및 풍압모우멘트 영향을 분석하였다. 또한 정상풍 하의 선박 운항에 있어 주요한 정보인 표류각과 대응 타각을 상대 풍향과 풍속을 기초로 산출하였고, 풍속 선속비에 따른 조종 한계 풍속, 선속별 풍향에 따른 조종 한계 풍속, 최대 풍압력에 의한 횡경사각 등을 정량적으로 산출하여 제시하였다. 이러한 자료는 한나라호의 입출항 조종 및 태풍 피항을 위한 운항 현장에서 직접 활용될 수 있고, 실선에서 해당 결과를 비교 평가할 수 있으므로 향후 이론식에 대한 수정 및 보완과 함께 교육 자료로 이용될 수 있을 것으로 판단된다.

초대형 구조모델을 활용한 쉘구조물의 용접변형 해석 (A weld-distortion analysis method of the shell structures using ultra structural FE model)

  • 하윤석;이명수
    • Journal of Welding and Joining
    • /
    • 제33권3호
    • /
    • pp.62-67
    • /
    • 2015
  • A very large shell-structure built in shipyards like ship hulls or offshore structures are joined by welding through full process. As the welding contains a high thermal cycle at a local area, the welded structures should be distorted unavoidably. Because a distorted ship block should be revised to the designed value before the next stage, the ability to predict and to control the weld distortion is an accuracy level of the yard itself. Despite the ship block size, several present thermal distortion methodologies can deal those sizes, but it is a different story to deal full ship size model. Even a fully constructed ship hull not remaining any welding can have an accuracy issue like outfitting installation problems. Any present thermal distortion methodology cannot accept this size for its recommended element size and the number. The ordinary welding breadth at erection stage is about 20~40 mm. It can hardly be a good choice to make finite element model of these sizes considering human effort and computational environment. The finite element model for structure analysis of a ship hull is prepared at front-end engineering design stage which is the first process of the project. The element size of the model is as fine as the longitudinal space, and it is not proper to obtain a weld distortion at the erection stage. In this study, a methodology is suggested that a weldment can be shrunk at original place instead of using structural finite element model. We cut the original shell elements at erection weld-line and put truss elements between the edges of cut elements for weld shrinkage. Additional truss elements are used to facsimile transverse weld shrinkage which cannot be from the weld-line truss element shrink. They attach to weld-line truss element like twigs from barks. The capacity of developed elements is verified through an accuracy check of erection process of a container vessel at the apt. hull. It can be a useful tool for verifying a centering accuracy after renew and for block-separating planning considering accuracy.

Experimental study on the asymmetric impact loads and hydroelastic responses of a very large container ship

  • Lin, Yuan;Ma, Ning;Gu, Xiechong;Wang, Deyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.226-240
    • /
    • 2020
  • This paper presents an experimental investigation of asymmetric impact effects on hydroelastic responses. A 1:64 scaled segmented ship model with U-shape open cross-section backbone was newly designed to meet elastic similarity conditions of vertical, horizontal and torsional stiffness simultaneously. Different wave heading angles and wavelengths were adopted in regular wave test. In head wave condition, parametric rolling phenomena happened along with asymmetric slamming forces, the relationship between them was disclosed at first time. The impact forces on starboard and port sides showed alternating asymmetric periodic changes. In oblique wave condition, nonlinear springing and whipping responses were found. Since slamming phenomena occurred, high-frequency bending moments became an important part in total bending moments and whipping responses were found in small wavelength. The wavelength and head angle are varied to elucidate the relationship of springing/whipping loads and asymmetric impact. The distributions of peaks of horizontal and torsional loads show highly asymmetric property.

선박 추진축계의 2절 비틀림진동에 기인한 주기관 X-모드 진동 현상의 연구 (A Study on Main Engine X-mode Vibration Phenomenon due to 2nd Node Torsional Vibration of the Marine Propulsion System)

  • 이돈출;김준성;김진희
    • 한국소음진동공학회논문집
    • /
    • 제23권9호
    • /
    • pp.806-813
    • /
    • 2013
  • For the past years, higher power rating 2 stroke super long stroke diesel engines having more than 8 cylinders and larger cylinder bore are installed mainly on very large containerships to save on fuel consumption. However, these engines are prone to X-mode vibration due to 2nd node torsional vibration or the X-type moment, particularly because of the increase in total length and height. Recently, cases of excessive X-mode vibration often occurred on engine's major components. This vibration is manifested also as secondary vibration causing failure in engine-mount large structures. This study investigated the excitations caused by the 2nd node propulsion shafting torsional vibration that influence X-mode vibration of the main engine and practical countermeasures are proposed. An 8RT-flex82T 8 cylinder engine and 11S90ME-C 11 cylinder engine for a container ship was used as research model.

선박 추진축계의 2절 비틀림 진동에 기인한 주 기관 상부 구조 진동현상과 방진 대책 (Main Engine Upper Structural Vibration Phenomenon due to 2nd Node Torsional Vibration and Countermeasures on the Marine Propulsion System)

  • 이돈출;김준성;김진희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.549-554
    • /
    • 2013
  • For the past years, higher power rating 2 stroke super long stroke diesel engines having more than 8 cylinders and larger cylinder bore are installed mainly on very large containerships to save on fuel consumption. However, these engines are prone to X-mode vibration due to $2^{nd}$ node torsional vibration or the X-type moment, particularly because of the increase in total length and height. Recently, cases of excessive X-mode vibration often occurred on engine's major components. This vibration is manifested also as secondary vibration causing failure in engine-mount large structures. This study investigated the excitations caused by the $2^{nd}$ node propulsion shafting torsional vibration that influence X-mode vibration of the main engine and practical countermeasures are proposed. An 8RT-82RT-flex 8 cylinder engine and 11S90S-ME 11 cylinder engine for a container ship was used as research model.

  • PDF

Design of a ship model for hydro-elastic experiments in waves

  • Maron, Adolfo;Kapsenberg, Geert
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권4호
    • /
    • pp.1130-1147
    • /
    • 2014
  • Large size ships have a very flexible construction resulting in low resonance frequencies of the structural eigen-modes. This feature increases the dynamic response of the structure on short period waves (springing) and on impulsive wave loads (whipping). This dynamic response in its turn increases both the fatigue damage and the ultimate load on the structure; these aspects illustrate the importance of including the dynamic response into the design loads for these ship types. Experiments have been carried out using a segmented scaled model of a container ship in a Seakeeping Basin. This paper describes the development of the model for these experiments; the choice was made to divide the hull into six rigid segments connected with a flexible beam. In order to model the typical feature of the open structure of the containership that the shear center is well below the keel line of the vessel, the beam was built into the model as low as possible. The model was instrumented with accelerometers and rotation rate gyroscopes on each segment, relative wave height meters and pressure gauges in the bow area. The beam was instrumented with strain gauges to measure the internal loads at the position of each of the cuts. Experiments have been carried out in regular waves at different amplitudes for the same wave period and in long crested irregular waves for a matrix of wave heights and periods. The results of the experiments are compared to results of calculations with a linear model based on potential flow theory that includes the effects of the flexural modes. Some of the tests were repeated with additional links between the segments to increase the model rigidity by several orders of magnitude, in order to compare the loads between a rigid and a flexible model.

파랑 중에 전진하는 선박에 대한 스프링잉 현상 해석 (An Analysis of the Springing Phenomenon of a Ship Advancing in Waves)

  • 이호영;신현경;박홍식;박종환
    • 대한조선학회논문집
    • /
    • 제38권3호
    • /
    • pp.41-46
    • /
    • 2001
  • 최근에 선박이 대형화되는 추세에 힘입어 조선소는 광폭천흘수선, 초대형 원유운반선 및 초대형 컨테이너선 등을 건조하고 있다. 이와 같은 선박은 상대적으로 다른 선박에 비해 강성이 작기 때문에 파랑 중에서 유탄성 운동을 하게 되고, 입사하는 파고가 작은 경우에도 선체의 2절 모드의 진동에 의해 선체의 갑판이 피로 파괴되는 경우가 종종 발생하는 것으로 알려져 있다. 본 논문에서 전진하는 선박의 유체 압력을 계산하기 위해 적분방정식은 3차원 소오스 분포법을 사용하고, 그린함수는 전진하면서 동요하는 형태를 이용하였다. 방사문제는 선박을 여러 개의 단면으로 나누어 단면간의 간섭효과를 고려하여 heave 및 pitch 강제동요와 관련된 부가질량 및 조파 감쇠계수를 계산하였고, 파강제력은 각 단면에서 선행해에 의한 힘만 고려하였다. 선박의 각 단면의 수직운동은 선박에 대한 운동방정식을 이용하고 강성행렬은 오일러 보 이론에 의해 산정되었다. 계산은 Esso-Osaka 선박을 모델로 도입하여 입사하는 파도의 주파수가 변함에 따른 선박의 각 단면에 대한 운동, 굽힘 모우멘트를 계산하였다.

  • PDF

혼 타 주위의 캐비테이팅 유동 특성에 대한 연구 (Cavitating-Flow Characteristics around a Horn-Type Rudder)

  • 최정은;정석호;김정훈
    • 대한조선학회논문집
    • /
    • 제44권3호
    • /
    • pp.228-237
    • /
    • 2007
  • The flow characteristics around a horn-type rudder behind an operating propeller of a high-speed large container carrier are studied through a numerical method in fully wetted and cavitating flow conditions. The computations are carried out in a small scale ratio of 10.00(gap space=5mm) to consider the gap effects. The Reynolds averaged Navier-Stokes equation for a mixed fluid and vapor transport equation applying cavitation model are solved. The axisymmetry body-force distribution technique is utilized to simulate the flow behind an operating propeller. The gap flow, the three-dimensional flow separation, and the cavitation are the flow characteristics of a horn-type rudder. The pattern of three-dimensional flow separation is analyzed utilizing a topological rule. The various cavity positions predicted by CFD were shown to be very similar to rudder erosion positions in real ship rudder. The effect of a preventing cavitation device, a horizontal guide plate, is also investigated.

회전하는 선박 프로펠러 전방 유입류에 대한 PIV 속도장 해석 (PIV Velocity Field Analysis of Inflow ahead of a Rotating Marine Propeller)

  • 이상준;백부근
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.30-37
    • /
    • 2004
  • Flow characteristics of the inflow ahead of a rotating propeller attached to a container ship model were investigated using a two-frame PIV (Particle Image Velocimetry) technique. Ensemble-averaged mean velocity fields were measured at four different blade phases. The mean velocity fields show the acceleration of inflow due to the rotating propeller and the velocity deficit in the near-wake region. The axial velocity distribution of inflow in the upper plane of propeller is quite different from that in the lower plane due to the thick hull boundary layer. The propeller inflow also shows asymmetric axial velocity distribution in the port and starboard side. As the inflow moves toward the propeller, the effect of phase angle variation of propeller blade on the inflow becomes dominant. In the upper plane above the propeller axis the inflow has very low axial velocity and large turbulent kinetic energy, compared with the lower plane. The boundary layer developed along the bottom surface of stern hull forms a strong shear layer affecting vortex structure of the propeller near-wake.