• Title/Summary/Keyword: Very high resolution imagery

Search Result 65, Processing Time 0.031 seconds

Classification with Seasonal Variability using Harmonic Components: Application for Remotely-sensed Images of Korean Peninsula

  • Lee, Sang-Hoon;Hong, Hyun-Ki
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1483-1485
    • /
    • 2003
  • Multitemporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. Using the estimates of periodogram which are obtained from sequential images, the periodicity of the process have been incorporates into multitemporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for seven-day composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 - 2000 using a dynamic technique.

  • PDF

Comparison of Visual Interpretation and Image Classification of Satellite Data

  • Lee, In-Soo;Shin, Dong-Hoon;Ahn, Seung-Mahn;Lee, Kyoo-Seock;Jeon, Seong-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.3
    • /
    • pp.163-169
    • /
    • 2002
  • The land uses of Korean peninsula are very complicated and high-density. Therefore, the image classification using coarse resolution satellite images may not provide good results for the land cover classification. The purpose of this paper is to compare the classification accuracy of visual interpretation with that of digital image classification of satellite remote sensing data such as 20m SPOT and 30m TM. In this study, hybrid classification was used. Classification accuracy was assessed by comparing each classification result with reference data obtained from KOMPSAT-1 EOC imagery, air photos, and field surveys.

원격탐사 자료 공공 활용을 위한 한-유럽 국제협력

  • Kim, Yun-Su;Lee, Gwang-Jae;Triebnig, Gerhard;Hoersch, Bianca
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.220-229
    • /
    • 2005
  • The Earth observation imagery from satellite provide valuable informations for the central government, local governments and diverse public organizations. The analysis of applications and data, which are sold by commercial distributors of Earth observation satellite data, shows this phenomenon clearly. The Government of Republic of Korea established and carried out a national space development plan to meet the national needs for remotely sensed imagery. After this national space development plan and on behalf of Korean government KARI has developed and launched successfully the KOMPSAT-1 and operates it up to now. KARI is now to launch by the end of year 2005 another optical remote sensing satellite with very high resolution and named as KOMPSAT-2. For the application of such very high resolution remotely sensed data the product validation should be done carefully and this product validation require lots of ancillary data such as in-situ measurements. For the purpose of diverse ancillary data acquisition joint work with other nations, related institutes and international bodies is essential. In this paper the status of Korean European Cooperations will be introduced, which are derived by KARI, ARCS and ESA for the wide use of KOMPSAT data in Europe.

  • PDF

Analysis of Availability of High-resolution Satellite and UAV Multispectral Images for Forest Burn Severity Classification (산불 피해강도 분류를 위한 고해상도 위성 및 무인기 다중분광영상의 활용 가능성 분석)

  • Shin, Jung-Il;Seo, Won-Woo;Kim, Taejung;Woo, Choong-Shik;Park, Joowon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1095-1106
    • /
    • 2019
  • Damage of forest fire should be investigated quickly and accurately for recovery, compensation and prevention of secondary disaster. Using remotely sensed data, burn severity is investigated based on the difference of reflectance or spectral indices before and after forest fire. Recently, the use of high resolution satellite and UAV imagery is increasing, but it is not easy to obtain an image before forest fire that cannot be predicted where and when. This study tried to analyze availability of high-resolution images and supervised classifiers on the burn severity classification. Two supervised classifiers were applied to the KOMPSAT-3A image and the UAV multispectral image acquired after the forest fire. The maximum likelihood (MLH) classifier use absolute value of spectral reflectance and the spectral angle mapper (SAM) classifier use pattern of spectra. As a result, in terms of spatial resolution, the classification accuracy of the UAV image was higher than that of the satellite image. However, both images shown very high classification accuracy, which means that they can be used for classification of burn severity. In terms of the classifier, the maximum likelihood method showed higher classification accuracy than the spectral angle mapper because some classes have similar spectral pattern although they have different absolute reflectance. Therefore, burn severity can be classified using the high resolution multispectral images after the fire, but an appropriate classifier should be selected to get high accuracy.

Development of an Image Processing System for the Large Size High Resolution Satellite Images (대용량 고해상 위성영상처리 시스템 개발)

  • 김경옥;양영규;안충현
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.376-391
    • /
    • 1998
  • Images from satellites will have 1 to 3 meter ground resolution and will be very useful for analyzing current status of earth surface. An image processing system named GeoWatch with more intelligent image processing algorithms has been designed and implemented to support the detailed analysis of the land surface using high-resolution satellite imagery. The GeoWatch is a valuable tool for satellite image processing such as digitizing, geometric correction using ground control points, interactive enhancement, various transforms, arithmetic operations, calculating vegetation indices. It can be used for investigating various facts such as the change detection, land cover classification, capacity estimation of the industrial complex, urban information extraction, etc. using more intelligent analysis method with a variety of visual techniques. The strong points of this system are flexible algorithm-save-method for efficient handling of large size images (e.g. full scenes), automatic menu generation and powerful visual programming environment. Most of the existing image processing systems use general graphic user interfaces. In this paper we adopted visual program language for remotely sensed image processing for its powerful programmability and ease of use. This system is an integrated raster/vector analysis system and equipped with many useful functions such as vector overlay, flight simulation, 3D display, and object modeling techniques, etc. In addition to the modules for image and digital signal processing, the system provides many other utilities such as a toolbox and an interactive image editor. This paper also presents several cases of image analysis methods with AI (Artificial Intelligent) technique and design concept for visual programming environment.

Land Use Feature Extraction and Sprawl Development Prediction from Quickbird Satellite Imagery Using Dempster-Shafer and Land Transformation Model

  • Saharkhiz, Maryam Adel;Pradhan, Biswajeet;Rizeei, Hossein Mojaddadi;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • Accurate knowledge of land use/land cover (LULC) features and their relative changes over upon the time are essential for sustainable urban management. Urban sprawl growth has been always also a worldwide concern that needs to carefully monitor particularly in a developing country where unplanned building constriction has been expanding at a high rate. Recently, remotely sensed imageries with a very high spatial/spectral resolution and state of the art machine learning approaches sent the urban classification and growth monitoring to a higher level. In this research, we classified the Quickbird satellite imagery by object-based image analysis of Dempster-Shafer (OBIA-DS) for the years of 2002 and 2015 at Karbala-Iraq. The real LULC changes including, residential sprawl expansion, amongst these years, were identified via change detection procedure. In accordance with extracted features of LULC and detected trend of urban pattern, the future LULC dynamic was simulated by using land transformation model (LTM) in geospatial information system (GIS) platform. Both classification and prediction stages were successfully validated using ground control points (GCPs) through accuracy assessment metric of Kappa coefficient that indicated 0.87 and 0.91 for 2002 and 2015 classification as well as 0.79 for prediction part. Detail results revealed a substantial growth in building over fifteen years that mostly replaced by agriculture and orchard field. The prediction scenario of LULC sprawl development for 2030 revealed a substantial decline in green and agriculture land as well as an extensive increment in build-up area especially at the countryside of the city without following the residential pattern standard. The proposed method helps urban decision-makers to identify the detail temporal-spatial growth pattern of highly populated cities like Karbala. Additionally, the results of this study can be considered as a probable future map in order to design enough future social services and amenities for the local inhabitants.

Comparison of the Estimated Result of Ecosystem Service Value Using Pixel-based and Object-based Analysis (화소 및 객체기반 분석기법을 활용한 생태계서비스 가치 추정 결과 비교)

  • Moon, Jiyoon;Kim, Youn-soo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_3
    • /
    • pp.1187-1196
    • /
    • 2017
  • Despite the continuing effort to estimate the value of function and services of ecosystem, most of the researches has used low and medium resolution satellite imagery such as MODIS or Landsat. It means that the researches to measure the ecosystem service value using VHR (Very High Resolution) satellite imagery have not been performed much, while the source of available VHR imagery is increasing. Thus, the aim of this study is to estimate and compare the result of ecosystem service value over Sejong city, S. Korea, which is one of the rapidly changed city, through the pixel-based and object-based classification analysis using VHR KOMPSAT-3 images, for more specific and precise information. In the result of the classification, forest and grassland were underestimated while agriculture and urban were overestimated in the pixel-based result compared to the object-based result. Furthermore, bare soil area was presented contrasting result that was increased in the pixel-based result, however, decreased in the object-based result. Using those results, ecosystem service values were estimated. The annual ecosystem service values in 2014 were $8.18 million USD(pixel-based) and $8.63 million USD(object-based), however, decreased to $7.80 million USD(pixel-based) and $8.62 million USD(object-based) in 2016. It is expected to use those results as a preliminary data when to make sustainable development plan and policy to improve the quality of life in the local level.

A Remote Sensing Scene Classification Model Based on EfficientNetV2L Deep Neural Networks

  • Aljabri, Atif A.;Alshanqiti, Abdullah;Alkhodre, Ahmad B.;Alzahem, Ayyub;Hagag, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.406-412
    • /
    • 2022
  • Scene classification of very high-resolution (VHR) imagery can attribute semantics to land cover in a variety of domains. Real-world application requirements have not been addressed by conventional techniques for remote sensing image classification. Recent research has demonstrated that deep convolutional neural networks (CNNs) are effective at extracting features due to their strong feature extraction capabilities. In order to improve classification performance, these approaches rely primarily on semantic information. Since the abstract and global semantic information makes it difficult for the network to correctly classify scene images with similar structures and high interclass similarity, it achieves a low classification accuracy. We propose a VHR remote sensing image classification model that uses extracts the global feature from the original VHR image using an EfficientNet-V2L CNN pre-trained to detect similar classes. The image is then classified using a multilayer perceptron (MLP). This method was evaluated using two benchmark remote sensing datasets: the 21-class UC Merced, and the 38-class PatternNet. As compared to other state-of-the-art models, the proposed model significantly improves performance.

A Comparative Study on Suitable SVM Kernel Function of Land Cover Classification Using KOMPSAT-2 Imagery (KOMPSAT-2 영상의 토지피복분류에 적합한 SVM 커널 함수 비교 연구)

  • Kang, Nam Yi;Go, Sin Young;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.19-25
    • /
    • 2013
  • Recently, the high-resolution satellite images is used the land cover and status data for the natural resources or environment management very helpful. The SVM algorithm of image processing has been used in various field. However, classification accuracy by SVM algorithm can be changed by various kernel functions and parameters. In this paper, the typical kernel function of the SVM algorithm was applied to the KOMPSAT-2 image and than the result of land cover performed the accuracy analysis using the checkpoint. Also, we carried out the analysis for selected the SVM kernel function from the land cover of the target region. As a result, the polynomial kernel function is demonstrated about the highest overall accuracy of classification. And that we know that the polynomial kernel and RBF kernel function is the best kernel function about each classification category accuracy.

A Study on RFM Based Stereo Radargrammetry Using TerraSAR-X Datasets (스테레오 TerraSAR-X 자료를 이용한 RFM 기반 Radargrammetry에 관한 연구)

  • Bang, SooNam;Koh, JinWoo;Yun, KongHyun;Kwak, JunHyuck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1D
    • /
    • pp.89-94
    • /
    • 2012
  • The RFM (Rational Function Model), as an alternative to physical sensor models has been widely used for photogrammetric processing of high resolution optical satellite imagery. However, the application of RF modeling to the SAR (Synthetic Aperture Radar) is very limited. In this paper, stereo radargrammetric processing of TerraSAR-X stereo pairs with RFM is implemented and analyzed. The investigation has shown that the accuracy of TerraSAR-X DSM is similar to that of the commercial S/W product. Finally, it is demonstrated that RFM is effective and feasible in the application to the radargrammetric SAR image processing.