• Title/Summary/Keyword: Very Large Floating-type Offshore Structure

Search Result 8, Processing Time 0.022 seconds

Hydroelastic Response Characteristics of a Very Large Offshore Structures of Somisubmersible Type in waves (반잠수식 초대형 해양구조물의 파랑중 탄성응답특성)

  • Goo, Ja-Sam;Kim, Kyung-Tae;Hong, Bong-Ki
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.19-27
    • /
    • 1999
  • To design a very large floating structure, such as a floating airport, we have to estimate the hydroelastic responses of a very large floating structure (VLFS) exactly. We developed the numerical method for estimating the hydroelastic responses of the VLFS. The developed numerical approach is based on a combination of the three-dimensional source distribution method, the wave interaction theory and the finite element method for structurally treating the space frame elements. The Numerical results of the hydroelastic responses and steady drift forces of a somisubmersible type offshore structure, which is supported by the 33(3 by 11) floating bodies, with various bending rigidities are illustrated.

  • PDF

A Study on the Reduction Analysis of the Response of the Mega-Float Offshore Structure in Regular Wave (1st Report) (대형 부류해양구조물의 파낭중 응답의 저감해석에 관한 연구(제1보))

  • 박성현;박석주
    • Journal of the Korean Institute of Navigation
    • /
    • v.24 no.1
    • /
    • pp.85-95
    • /
    • 2000
  • In the country where the population concentrates in the metropolis with the narrow land, development of the ocean space is necessary. Recently, mega-float offshore structure has been studied as one of the effective utilization of the ocean space. And very large floating structures are now being considered for various applications such as floating airports, offshore cities and so on. This very large structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. And it is necessary to examine the effect of ocean wave external force received from the natural environment. In this study, the mat-type large floating structure is made to be analytical model. And the analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structural section of this model. And the analysis is carried out using the boundary element method in the fluid division. The validity of analysis method is verified in comparison with the experimental result in the Japan Ministry of Transport Ship Research Institution. In order to know the characteristics of the dynamic response of the large floating structures, effects of wavelength, bending rigidity of the structure, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

Wave Response Analysis and Future Direction of Mega-Float

  • Park, Sung-Hyeon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2001.10a
    • /
    • pp.153-168
    • /
    • 2001
  • In the country where the population concentrates in the metropolis with the narrow land, development of th ocean space is necessary. Recently, mega-float offshore structure is studied as one of the effective utilization of the ocean space. And very large floating structure are now being considered for various applications such as floating airports, offshore cities and so on. This very large structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. And it is necessary to examine the effect of ocean wave eternal force received from the natural environment. In this study, the mat-type large floating structure is made to be analytical model. And the analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structure part of this model. And the analysis is carried out using the boundary element method in the fluid part. In order to know the characteristics of the dynamic response of the large floating structures, effects of wavelength, bending rigidity of the structure, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

Analysis of wave induced vibration of a typical very large floating-type offshore airport platform (초대형 부유식 해상공항의 파도에 의한 진동응답특성 해석)

  • 이현엽;전영기;신현경
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.10-16
    • /
    • 1996
  • The vibration due to progressive ocean waves is analyzed for a typical footing-type offshore airport platform. The platform is modelled as a spring-supported Euler beam and buoyancy change due to wave is considered as excitation force, under the assumption that the wave propagates without distortion by the structure. The results show that the natural frequencies of this structure are distributed very closely and are little affected by boundary conditions and that the response charateristics due to ocean waves are quite different according to the wave frequency. In this study, the wave frequencies are divided into three regions; the resonance region at which the response is governed by the resonance between the natural mode at the wave frequency and the corresponding modal component of the wave excitation force, the bending governed region at which the response is governed by the bending stiffness, and the spring (buoyancy) governed region at which the response is governed by the spring constant ahd therefore is same as the incident wave form.

  • PDF

Hydroelastic Behavior for a Very Lagre Floating Structure of Poontoon-Type in Multi-Directional Irregular Waves (다방향불규칙파중의 Pontoon형의 초대형부유식해양구조물에 대한 유탄성응답 특성)

  • Kim, Chel-Hyun;Jo, Hyo-Jae;Lee, Seung-Chul;Goo, Ja-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.83-90
    • /
    • 2006
  • Recently, as the technology of utilization for the ocean space is being advanced, floating structures are asked for being mare and mare huge-scale. A very large floating structure(VLFS) is considered as a flexible structure, because of a quite large length-to-breadth ratio and its geometrical flexibility. The main object of this study is to develop an accurate and convenient method on the hydroelastic response analysis of very large offshore structures on the real sea states. The numerical approach for the hydorelastic responses is based on the combination of the three dimensional source distribution methods, the dynamic response analysis method and the spectral analysis method. A model is considered as many rigid bodies connected elastic beam elements. The calculated results shaw good agreement with the experimental and calculated ones by Ohta.

Hydroelastic Response Analysis of Very Large Floating Structures Including the Hydrodynamic Forces due to Elastic Motions in Waves (탄성거동에 의한 유체력을 고려한 초대형 부유식 구조물의 유탄성응답 해석)

  • Kim, Chuel-Hyun;Lee, Chang-Ho;Lee, Seung-Chul;Goo, Ja-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.101-107
    • /
    • 2006
  • Recently, with the increase in requirements for marine development, a marine urbanism is being visualized, with more and more huge-scale structures at the scope of the ocean space utilization. In particular, a pontoon-type structure has attracted attention, since The Floating Structures Association of Japan proposed a new concept as the most suitable one of floating airports. The Very Lage Floating Structure (VLFS) is considered a flexible structure, for a quite large length-to-breadth ratio and its geometrical flexibility. The main objective of this study is to makean exact and convenient prediction about the hydro-elastic response on very large offshore structures in waves. The numerical approach for the hydro-elastic responses is based on the combination of the three dimensional source distribution method and the dynamic response analysis method, which assumed a dividing pontoon type structure, as many rigid bodies connected elastic beam elements. The established hydo-elastic theory was applied to the radiation forces caused by motions of a whole structure, formulated using the global coordinate system, which has the origin at the center of the structure. However, in this paper, we took radiation forces, occurred by individual motions of floating bodies, into consideration. The calculated results show good agreement with the experimental and calculated results by Yago.

A Dynamic Response Analysis of Very Large Offshore Structures in Multi-Directional Irregular Waves (다방향 불규칙파중의 초대형 해양구조물의 동적응답해석)

  • Goo, J.S.;Jo, H.J.;Kim, K.T.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.90-103
    • /
    • 1997
  • A numerical procedure is described for predicting the motion and structural responses of the very large floating offshore structures supported by multiple 3-D floating bodies of arbitrary shape in multi-directional irregular waves. The developed numerical approach taking into account of the hydrodynamic interactions among the multiple floating bodies is based on a combination of the 3-D source distribution method, the wave interaction theory, the finite element method and the spectral analysis method to get the significant values of the dynamic responses in the multi-directional irregular waves. The effects of wave interactions and directionality on the dynamic responses of a very large offshore structure, which is semisubmersible ring type, are numerically examined.

  • PDF

Hydroelastic analysis of a truss pontoon Mobile Offshore Base

  • Somansundar, S.;Selvam, R. Panneer;Karmakar, D.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.423-448
    • /
    • 2019
  • Very Large Floating Structures (VLFS) are one among the solution to pursue an environmentally friendly and sustainable technology in birthing land from the sea. VLFS are extra-large in size and mostly extra-long in span. VLFS may be classified into two broad categories, namely the pontoon type and semi-submersible type. The pontoon-type VLFS is a flat box structure floating on the sea surface and suitable in regions with lower sea state. The semi-submersible VLFS has a deck raised above the sea level and supported by columns which are connected to submerged pontoons and are subjected to less wave forces. These structures are very flexible compared to other kinds of offshore structures, and its elastic deformations are more important than their rigid body motions. This paper presents hydroelastic analysis carried out on an innovative VLFS called truss pontoon Mobile Offshore Base (MOB) platform concept proposed by Srinivasan and Sundaravadivelu (2013). The truss pontoon MOB is modelled and hydroelastic analysis is carried out using HYDRAN-XR* for regular 0° waves heading angle. Results are presented for variation of added mass and damping coefficients, diffraction and wave excitation forces, RAOs for translational, rotation and deformational modes and vertical displacement at salient sections with respect to wave periods.