• Title/Summary/Keyword: Very High-Resolution Satellite Image

Search Result 92, Processing Time 0.022 seconds

Comparison of Change Detection Accuracy based on VHR images Corresponding to the Fusion Estimation Indexes (융합평가 지수에 따른 고해상도 위성영상 기반 변화탐지 정확도의 비교평가)

  • Wang, Biao;Choi, Seok Geun;Choi, Jae Wan;Yang, Sung Chul;Byun, Young Gi;Park, Kyeong Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.63-69
    • /
    • 2013
  • Change detection technique is essential to various applications of Very High-Resolution(VHR) satellite imagery and land monitoring. However, change detection accuracy of VHR satellite imagery can be decreased due to various geometrical dissimilarity. In this paper, the existing fusion evaluation indexes were revised and applied to improve VHR imagery based change detection accuracy between multi-temporal images. In addition, appropriate change detection methodology of VHR images are proposed through comparison of general change detection algorithm with cross-sharpened image based change detection algorithm. For these purpose, ERGAS, UIQI and SAM, which were representative fusion evaluation index, were applied to unsupervised change detection, and then, these were compared with CVA based change detection result. Methodologies for minimizing the geometrical error of change detection algorithm are analyzed through evaluation of change detection accuracy corresponding to image fusion method, also. The experimental results are shown that change detection accuracy based on ERGAS index by using cross-sharpened images is higher than these based on other estimation index by using general fused image.

Facilities Analysis of Laver Cultivation Grounds in Korean Coastal Waters Using SPOT-5 Images in 2005 (SPOT-5 위성영상에 의한 2005년 한국 연안 김 양식장의 시설현황 분석)

  • Yang Chan-Su;Park Sung-Woo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.3
    • /
    • pp.168-175
    • /
    • 2006
  • The cultural grounds of lave r have been surveyed using SPOT-5 satellite images. The facilities of laver cultivation area in the coastal waters of Korea were calculated. 10 m resolution multispectral images of SPOT-5 are adopted for the southern are a of Jebu Island, Hwaseong city to develop an automatic detection approach of laver nets that consists of the following: band difference technique, canny edge detector and morphological analysis: The number of satellite-based facilities was relatively high as compared with the licensed number in 2005, 676,749 chaek and 572,745 chaek(柵, unit of measure for laver farm), respectively. The ratio of a law abiding facility was very low at 52.9%. These data could be applied to control its national production keeping a stable market price for the government body.

  • PDF

Object-based Change Detection using Various Pixel-based Change Detection Results and Registration Noise (다양한 화소기반 변화탐지 결과와 등록오차를 이용한 객체기반 변화탐지)

  • Jung, Se Jung;Kim, Tae Heon;Lee, Won Hee;Han, You Kyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.481-489
    • /
    • 2019
  • Change detection, one of the main applications of multi-temporal satellite images, is an indicator that directly reflects changes in human activity. Change detection can be divided into pixel-based change detection and object-based change detection. Although pixel-based change detection is traditional method which is mostly used because of its simple algorithms and relatively easy quantitative analysis, applying this method in VHR (Very High Resolution) images cause misdetection or noise. Because of this, pixel-based change detection is less utilized in VHR images. In addition, the sensor of acquisition or geographical characteristics bring registration noise even if co-registration is conducted. Registration noise is a barrier that reduces accuracy when extracting spatial information for utilizing VHR images. In this study object-based change detection of VHR images was performed considering registration noise. In this case, object-based change detection results were derived considering various pixel-based change detection methods, and the major voting technique was applied in the process with segmentation image. The final object-based change detection result applied by the proposed method was compared its performance with other results through reference data.

A Study on RFM Based Stereo Radargrammetry Using TerraSAR-X Datasets (스테레오 TerraSAR-X 자료를 이용한 RFM 기반 Radargrammetry에 관한 연구)

  • Bang, SooNam;Koh, JinWoo;Yun, KongHyun;Kwak, JunHyuck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1D
    • /
    • pp.89-94
    • /
    • 2012
  • The RFM (Rational Function Model), as an alternative to physical sensor models has been widely used for photogrammetric processing of high resolution optical satellite imagery. However, the application of RF modeling to the SAR (Synthetic Aperture Radar) is very limited. In this paper, stereo radargrammetric processing of TerraSAR-X stereo pairs with RFM is implemented and analyzed. The investigation has shown that the accuracy of TerraSAR-X DSM is similar to that of the commercial S/W product. Finally, it is demonstrated that RFM is effective and feasible in the application to the radargrammetric SAR image processing.

ShadowCam Instrument and Investigation Overview

  • Mark Southwick Robinson;Scott Michael Brylow;Michael Alan Caplinger;Lynn Marie Carter;Matthew John Clark;Brett Wilcox Denevi;Nicholas Michael Estes;David Carl Humm;Prasun Mahanti;Douglas Arden Peckham;Michael Andrew Ravine;Jacob Andrieu Schaffner;Emerson Jacob Speyerer;Robert Vernon Wagner
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.149-171
    • /
    • 2023
  • ShadowCam is a National Aeronautics and Space Administration Advanced Exploration Systems funded instrument hosted onboard the Korea Aerospace Research Institute (KARI) Korea Pathfinder Lunar Orbiter (KPLO) satellite. By collecting high-resolution images of permanently shadowed regions (PSRs), ShadowCam will provide critical information about the distribution and accessibility of water ice and other volatiles at spatial scales (1.7 m/pixel) required to mitigate risks and maximize the results of future exploration activities. The PSRs never see direct sunlight and are illuminated only by light reflected from nearby topographic highs. Since secondary illumination is very dim, ShadowCam was designed to be over 200 times more sensitive than previous imagers like the Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC). ShadowCam images thus allow for unprecedented views into the shadows, but saturate while imaging sunlit terrain.

Analyzing the Applicability of Greenhouse Detection Using Image Classification (영상분류에 의한 하우스재배지 탐지 활용성 분석)

  • Sung, Jeung Su;Lee, Sung Soon;Baek, Seung Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.4
    • /
    • pp.397-404
    • /
    • 2012
  • Jeju where concentrates on agriculture and tourism, conversion of outdoor culture into cultivation under structure happens actively for the purpose of increasing profit so continuous examination on house cultivation area is very important for this region. This paper is to suggest the effective image classification method using high resolution satellite image to detect the greenhouse. We carried out classification of greenhouse using the supervised classification and rule-based classification method about Formosat-2 images. Connecting result of two classification try to find accuracy improvement for greenhouse detection. Results about each classification method were calculated the accuracy by comparing with the result of visual detection. As a result, mahalanobis distance among the supervised methods was resulted in the highest detection. Also, it could be checked that detection accuracy was improved by tying with result of supervised method and result of rule-based classification. Therefore, it was expected that effective detection of greenhouse would be feasible if henceforward further study is performed in the process of connecting supervised classification and rule-based classification.

Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm (딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석)

  • Jaewon Hur;Changhui Lee;Doochun Seo;Jaehong Oh;Changno Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.387-396
    • /
    • 2024
  • Most very high-resolution (VHR) satellite images provide rational polynomial coefficients (RPC) data to facilitate the transformation between ground coordinates and image coordinates. However, initial RPC often contains geometric errors, necessitating correction through matching with ground control points (GCPs). A GCP chip is a small image patch extracted from an orthorectified image together with height information of the center point, which can be directly used for geometric correction. Many studies have focused on area-based matching methods to accurately align GCP chips with VHR satellite images. In cases with seasonal differences or changed areas, edge-based algorithms are often used for matching due to the difficulty of relying solely on pixel values. However, traditional edge extraction algorithms,such as canny edge detectors, require appropriate threshold settings tailored to the spectral characteristics of satellite images. Therefore, this study utilizes deep learning-based edge information that is insensitive to the regional characteristics of satellite images for matching. Specifically,we use a pretrained pixel difference network (PiDiNet) to generate the edge maps for both satellite images and GCP chips. These edge maps are then used as input for normalized cross-correlation (NCC) and relative edge cross-correlation (RECC) to identify the peak points with the highest correlation between the two edge maps. To remove mismatched pairs and thus obtain the bias-compensated RPC, we iteratively apply the data snooping. Finally, we compare the results qualitatively and quantitatively with those obtained from traditional NCC and RECC methods. The PiDiNet network approach achieved high matching accuracy with root mean square error (RMSE) values ranging from 0.3 to 0.9 pixels. However, the PiDiNet-generated edges were thicker compared to those from the canny method, leading to slightly lower registration accuracy in some images. Nevertheless, PiDiNet consistently produced characteristic edge information, allowing for successful matching even in challenging regions. This study demonstrates that improving the robustness of edge-based registration methods can facilitate effective registration across diverse regions.

Exploring Optimal Threshold of RGB Pixel Values to Extract Road Features from Google Earth (Google Earth에서 도로 추출을 위한 RGB 화소값 최적구간 추적)

  • Park, Jae-Young;Um, Jung-Sup
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.66-75
    • /
    • 2010
  • The authors argues that the current road updating system based on traditional aerial photograph or multi-spectral satellite image appears to be non-user friendly due to lack of the frequent cartographic representation for the new construction sites. Google Earth are currently being emerged as one of important places to extract road features since the RGB satellite image with high multi-temporal resolution can be accessed freely over large areas. This paper is primarily intended to evaluate optimal threshold of RGB pixel values to extract road features from Google Earth. An empirical study for five experimental sites was conducted to confirm how a RGB picture provided Google Earth can be used to extact the road feature. The results indicate that optimal threshold of RGB pixel values to extract road features was identified as 126, 125, 127 for manual operation which corresponds to 25%, 30%, 19%. Also, it was found that display scale difference of Google Earth was not very influential in tracking required RGB pixel value. As a result the 61cm resolution of Quickbird RGB data has shown the potential to realistically identified the major type of road feature by large scale spatial precision while the typical algorithm revealed successfully the area-wide optimal threshold of RGB pixel for road appeared in the study area.

Study on the Retreatment Techniques for NOAA Sea Surface Temperature Imagery (NOAA 수온영상 재처리 기법에 관한 연구)

  • Kim, Sang-Woo;Kang, Yong-Q.;Ahn, Ji-Sook
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.331-337
    • /
    • 2011
  • We described for the production of cloud-free satellite sea surface temperature(SST) data around Northeast Asian using NOAA AVHRR(Advanced Very High Resolution Radiometer) SST data during 1990-2005. As a result of Markov model, it was found that the value of Markov coefficient in the strong current region such as Kuroshio region showed smaller than that in the weak current. The variations of average SST and regional difference of seasonal day-to-day SST in spring and fall were larger than those in summer and winter. In particular, the distribution of the regional difference appeared large in the vicinity of continental in spring and fall. The difference of seasonal day-to-day SST was also small in Kuroshio region and southern part of East Sea due to the heat advection by warm currents.

Developing Coast Vulnerable Area Information Management System using Web GIS (Web GIS를 이용한 연안위험취약지역 정보시스템 구축)

  • Pak, Hyeon-Cheol;Kim, Hyoung-Sub;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.4
    • /
    • pp.155-164
    • /
    • 2005
  • The coast has been known as very vulnerable area. This area has nature disasters such as typhoon, tidal wave, flood and storm almost every year. In this study, coast vulnerable area information management system was developed to manage the coastal facilities and vulnerable area through Web GIS. This system is able to visualize the damage area and support the official work related to coast as efficient DSS(Decision Supporting System). Moreover, the foundation for domestic coast information management is expected by acquiring less cost and time. For this, GIS DB was first constructed by acquiring damage factor data such as typhoon, tidal wave, flood and storm. Then GIS analysis methods and high resolution satellite images are used to possibly present the results of retrieve as table, map, graph, inundation simulation in real time.

  • PDF